
M2 TIW – M2 BIO-INFO

DATA ANALYSIS
Clustering – Beyond K-Means



OBJECTIVE

• Discover information from data without labeled examples

• Extract some hidden organisation, patterns, relation between 

elements

• Extract a (statistical ?) model of the data ?
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CLUSTERING

3



CLUSTERING

• The most famous unsupervised ML problem

• 100+ methods exist
‣ Most people use “good old” methods: k-means (1967), DBSCAN (1996)

‣ They are often “good enough”, well implemented, safe, …

• Part of the problem: Clustering is not well defined
‣ What is “a good cluster” ?
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CLUSTERING

• How would you define a good cluster ?

• A good partition in clusters ?
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CLUSTERING
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K-MEANS

• Definition: 
‣ For a target number of clusters 𝑘

‣ Find the item assignment minimizing

- The inter-cluster variance (weighted by cluster size)

- Equivalently => The squared distance from points to their cluster center

- Equivalently => The squared distance between cluster elements
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K-MEANS

argmin
𝐒

∑
𝑖=1

𝑘

∑
𝐱∈𝑆𝑖

∥ 𝐱 − 𝝁𝑖 ∥
2= argmin

𝐒
∑
𝑖=1

𝑘

|𝑆𝑖|Var(𝑆𝑖)

with 

𝐒 a cluster assignment, 

𝑘 a number of clusters

𝑥 a d dimensional item, and 

𝜇𝑖 the centroid of items in the cluster 𝐒𝑖 .
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K-MEANS

argmin
𝐒

∑
𝑖=1

𝑘

∑
𝐱∈𝑆𝑖

∥ 𝐱 − 𝝁𝑖 ∥
2= argmin

𝐒
∑
𝑖=1

𝑘

|𝑆𝑖|Var(𝑆𝑖)

This is only one possible objective for clustering!

For instance, why using the squared distance? 
=>Good math properties (derivation), history

=>Consequence: outliers penalized more (pros and cons)

9



K-MEDOIDS

Same method, replacing the squared distance by 

the absolute distance
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K-MEANS

argmin
𝐒

∑
𝑖=1

𝑘

∑
𝐱∈𝑆𝑖

∥ 𝐱 − 𝝁𝑖 ∥
2= argmin

𝐒
∑
𝑖=1

𝑘

|𝑆𝑖|Var(𝑆𝑖)

Note that without fixing 𝑘, there is a trivial solution 

with each item alone in its own cluster.
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K-MEANS

• Discovering the global optimum is NP-hard

• How to find quickly a good solution ?
‣ Naive k-means

‣ K-means ++ (used in most current implementations)

‣ Use optimized data structure (KDtrees…)
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K-MEANS

• 1)Assigment: Assign each item to its closest cluster center

• 2) Update: Recompute the center of each cluster as the mean 

(centroid) of items that compose that cluster

• Start with random centroids

14



K-MEANS
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NAIVE K-MEANS

• Known limit: convergence to poor local minimum if poor initial 

centroids
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K-MEANS++

• Several variants to choose wisely the initial centroids

• K-means++ is proven to improve the results, statistically
‣ Not always, but improves more often than deteriorate the results.
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K-MEANS++
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K-MEANS++
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WEAKNESSES

• We can identify some clear weaknesses:
‣ K-means has a tendency to search for clusters of equal 

sizes (minimize overall cluster variance)

‣ Clusters tend to be circular, since all directions are 

worth the same. 
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NORMALIZATION

• Important point: k-means is based on Euclidean distance.
‣ We minimize the inter-cluster Euclidean distance between points

‣ We could adapt the method to other distances

• Data needs to be normalized/standardized
‣ Clustering based on age in years and revenue in $. The “distance” in $ will 

dominate
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GAUSSIAN MIXTURES
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GENERATIVE MODEL

• K-means: Optimize an objective.
‣ No “explanation” of clusters found

• Generative models are more powerful
‣ We make a clear hypothesis on HOW the data was created

- A natural mechanism

- A realistic approximation

‣ We optimize the parameters of the models
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GAUSSIAN MIXTURES

• We define a generative model for 𝑘 clusters
‣ Each cluster corresponds to a gaussian distribution, defined by a center and a 

variance, or covariance matrix

‣ The problem to solve is to find the parameters Θ (centers, variances) that 

maximize the likelihood of the corresponding model to generate the observed 

items 𝑋

‣ More formally, we are searching for: argmax
𝚯

𝑝(𝑋|Θ)
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GAUSSIAN MIXTURES
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GAUSSIAN MIXTURES

Why it makes sense

Each flower is seen as a “random 

generation” from an “imperfect model”

The mean is the “perfect flower”

The variance is the “precision” of the 

generation
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GAUSSIAN MIXTURES

• Generalize k-means concept:
‣ Clusters are sets of points that are close in euclidean space

‣ Different clusters tend to be far appart

• Translate it statistically:
‣ Each cluster can be described using a normal distribution centered on its 

centroid, with the probability of observing points decreasing with the distance to 

the centroid.
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MULTIVARIATE GAUSSIAN

• A gaussian is defined by
‣ a mean 

‣ a variance

• A multivariate gaussian is 

defined by a 
‣ A center 

‣ a covariance matrix
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K-MEANS EQUIVALENCE

• If we assume that:
‣ The gaussian distributions are defined only by their variance, not by complete 

covariance matrices 

- Similar in all directions, “spherical”

‣ The variance value is the same for all gaussian distributions

- Spheres of the same “size”

‣ The probability for each item to be generated by each of the gaussian 

distribution is identical

• Then it can be shown that the objective is equivalent to the k-

means objective !
‣ We can relax some of those constraints to get richer results
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DENSITY HETEROGENEITY

• Allowing denser/sparser clusters
‣ Consider the case in which Gaussians are defined by a single value of variance

(covariance=0)

‣ If they differ for each cluster, some can be denser than others

GM, 

free variance
K-means
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SHAPE VARIATIONS

• Allowing non-circular shaped 

clusters
‣ If values on the diagonal of the covariance 

matrix differs, the matrix can have 

ellipsoidal shape, in the direction of the axes

‣ If the full covariance matrix is inferred, any 

ellipsoidal shape can be obtained

K-means Full gaussian33



SIZE HETEROGENEITY

• The fraction of all items generated by each 

generative gaussian (e.g., cluster) is the same. 

• We usually add a strength parameter 𝜋 to 

weight the fraction of items generated by each 

cluster

𝑝(𝑋) = ∑
𝑘=1

𝐾

𝜋𝑘𝐺(𝑋|𝜇𝑘, 𝜎𝑘)
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ALL TOGETHER

𝑝(𝑋) = ∑
𝑘=1

𝐾

𝜋𝑘𝐺(𝑋|𝜇𝑘, 𝜎𝑘)

argmax
𝚯

𝑝(𝑋|Θ) Θ = 𝜇, 𝜎, 𝜋
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K-MEANS COMPARISON

https://smorbieu.gitlab.io/gaussian-mixture-models-k-means-on-steroids/

K-means Full Gaussian Mixture
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EM ALGORITHM

• To search for the parameters, we can use a method similar to 

naive k-means known as EM (Expectation Maximization)
‣ Note 𝑍 the cluster assignation of items to their most likely clusters

‣ 1)Initialize parameters Θ to random values

‣ 2)(E) Compute 𝑍, given Θ

‣ 3)(M) Use assignations in 𝑍 to update values of Θ

‣ 4)Iterate steps 2 and 3 until convergence 
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EM ALGORITHM

https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
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PROS AND CONS
• Gaussian mixture seems an improvement over k-means. Why 

not always using it?
‣ Force of habits

‣ Higher computational cost (More parameters => More complex problem)

‣ Higher possibility of overfitting (More parameters =>More overfit risk)
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REMAINING PROBLEMS

• We can mention 3 problems remaining (at least)
‣ The number of clusters still needs to be provided. 

- If allowed to change, it will always converge to the trivial solution with each item in its own 

cluster

‣ If the data is completely random, the method still finds clusters

‣ Impossible to discover non-convex structures, such as circles or spirals
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MDL

• Discovering automatically the number of clusters —and thus 

finding no clusters in random data— is possible using an MDL 

approach

• MDL = Minimum Description Length 

• The principle is to search a solution maximizing the 

compression rate, i.e., minimizing the cost of the description, 

e.g., in bits.

• https://en.wikipedia.org/wiki/Minimum_description_length
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DBSCAN
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K-MEANS/GM LIMITS

• The problem of spiral/Circulal/weird shaped clusters comes 

from the assumption that items of a cluster should be 

“normally distributed” around their mean
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LOCAL DEFINITIONS

• To overcome this problem, several methods propose local 

definitions of clusters
‣ Does not explicitly optimize a global function

‣ Items belong to clusters because they are close enough, locally, to other items in 

that cluster

‣ Clusters exist because there is continuum between all items in it, locally
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DBSCAN

• Define some local parameters:
‣ 𝜖, the distance threshold above which items are considered “too different”

‣ minPts, a minimal number of reachable points

‣ No need to define a number of clusters !

• Define:
‣ An item p is a core point if it has at least minPts items at distance less than 𝜖

- Including p itself
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DBSCAN: GRAPH DEFINITION

• 1)Build a graph such as
‣ Each core node is a node

‣ A link exist between core nodes if they are at d<𝜖

• 2)Detect the connected components of the graph
‣ 2 nodes belong to the same connected components if there is a path between 

them

• 3) For all non-core nodes:
‣ If they have no core points directly reachable, discard them as noise

‣ Else, attribute them to (one of) the clusters for which one core point is directly 

reachable

- Variant DBSCAN* =>ignore those points as noise
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DBSCAN

https://community.alteryx.com/t5/Data-Science/Partitioning-Spatial-Data-with-DBSCAN/ba-p/446273
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DBSCAN

• Strength:
‣ No need to define the number of clusters

‣ Can discover arbitrarily-shaped clusters

‣ A notion of noise

• Weaknesses
‣ Defining 𝜖 is extremely difficult

- Similar to the number of clusters. 

- In fact it determines the number of clusters…

‣ Despite safeguards, risk of the stretched clusters effect 
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CLUSTERING EVALUATION
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AD-HOC SCORES

• Several clustering method define their own objective to 

minimize. This objective can be used as a score for clusters 

obtained by this method or others
‣ k-means minimizes inter-cluster variance

‣ Gaussian mixture maximizes the likelihood

• But can lead to unfair comparisons:
‣ Using inter-cluster variance to compare k-means and another method such as 

DBscan is unfair.

- One explicitly minimizes this objective, the other no…

• The choice of a score is equivalent to choosing a definition of 

cluster… 
53



SILHOUETTE SCORE

• Silhouette score of 1 observation:
‣ 1)Compute 𝑎(𝑖), average distance to all other observations of the same cluster

‣ 2)Compute 𝑏(𝑖), min of “average distance to all observations of another 

cluster”

‣ 3) Silhouette: 𝑠(𝑖) = {

1 − 𝑎(𝑖)/𝑏(𝑖), if𝑎(𝑖) < 𝑏(𝑖)
0, if𝑎(𝑖) = 𝑏(𝑖)

𝑏(𝑖)/𝑎(𝑖) − 1, if𝑎(𝑖) > 𝑏(𝑖)

• Silhouette coefficient:
‣ Average of all individual Silhouette scores.
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AUTOMATIC K SELECTION

• The Silhouette score can be 

used to choose 

automatically the number 

of clusters:
‣ We vary the number of clusters 

k, and search for the maximum
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AUTOMATIC K SELECTION

• Famous variant: the elbow method
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AUTOMATIC K SELECTION
Schubert, E. (2023). Stop using the elbow criterion for 

k-means and how to choose the number of clusters 

instead. ACM SIGKDD Explorations Newsletter, 25(1), 36-

42.
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NON-SPHERICAL CLUSTERS

• Remember the difference between k-means 

clusters and DB-scan clusters

• Previous scores are reliable only in k-means-

like clusters.

• Specific (less known) scores for arbitrary 

clusters
‣ Density-based silhouette

‣ DBCV(Density-Based Clustering Validation)
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STABILITY

• If clusters are not clear, multiple runs of the same method 

might discover different clusters

• Evaluating the stability of those clusters might be a way to 

assess their quality

• To better assess the quality, one can introduce noise:
‣ Comparing clustering on sub-sets (random samples, independent samples…)

‣ Adding noise (fake data points, outliers, removing low-quality data…)
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CONSENSUS CLUSTERING

• Let’s consider that we have multiple candidate clusterings
‣ From the same method ran multiple times

‣ From the same method with different parameters

‣ From different methods

• One can compute a “consensus”

‣ Create the consensus matrix 𝐶𝑖𝑗 counts the number of times data points 𝑖, 𝑗
were grouped together

‣ Apply your favorite clustering method on that matrix, considering that 
1

𝐶𝑖𝑗

gives the distance between data points.
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MANY OTHER CLUSTERINGS

• Hierarchical clustering

• Spectral clustering

• Mean-Shift clustering

• Affinity Propagation

• OPTICS (Ordering Points To Identify the Clustering Structure)
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NO FREE LUNCH THEOREM

• “Any two optimization algorithms are equivalent when their 

performance is averaged across all possible problems”
‣ Two clustering algorithms with different objective functions are fully 

comparable, one is not intrinsically better than another.

‣ Each is the best for the objective function it defines

‣ What is “the best” cluster? Depends on your definition.

• Does not mean that some methods are not more appropriate 

than other for what most people consider as clusters…

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.63

https://ieeexplore.ieee.org/document/585893

