M2 TIW - M2 BIO-INFO ## DATA ANALYSIS Network Data Mining ## NETWORKS/GRAPHS ## NETWORKS/GRAPHS #### Structured data - Text - Sequence. Each item is **before** or **after** the other ones. And it is important - 1D organisation - Images - Each pixel has a position in 2D grid, it is on the **left**, **right**, **top** or **bottom** compared with the other ones. And it is important - 2D organisation - Variants: Video (3D), time series (1D continuous), spatial (2D/3D continuous), etc. - Networks: Neighborhoods are not constrained. The graph is the structure - Generalization of discrete structures (text, images, videos) # NETWORKS ARE EVERYWHERE # 150 YEARS OF PUBLICATIONS Sources: 150 years of Nature: a data graphic charts our evolution Nature 150 Interactive Ce réseau décrypte 150 ans de découvertes scientifiques ## GRAPHS & NETWORKS #### **Networks** often refers to real systems - •WWW, - social network - metabolic network. - Language: (Network, node, link) Language: (Graph, vertex, edge) | Vertex | Edge | | | |---------|------------|--|--| | person | friendship | | | | neuron | synapse | | | | Website | hyperlink | | | | company | ownership | | | | gene | regulation | | | In most cases we will use the two terms interchangeably. # NETWORK REPRESENTATIONS ### **Networks: Graph notation** ``` Graph notation : G = (V, E) ``` V _ Ε $u \in V$ set of vertices/nodes. set of edges/links. a node. $(u,v) \in E$ an edge. #### **Network - Graph notation** #### Graph #### **Graph notation** $$G = (V, E)$$ $$V = \{1, 2, 3, 4, 5, 6\}$$ $$E = \{(1, 2), (1, 6), (1, 5), (2, 4), (2, 3), (2, 5), (2, 6), (6, 5), (5, 5), (4, 3)\}$$ ## GRAPH REPRESENTATION ### Node-Edge description | ı | | | | | | | | |---|--|---|--|--|--|--|--| | | N_u | N_u Neighbourhood of u , nodes sharing a link with u . | | | | | | | | k_u | k_u Degree of u , number of neighbors $ N_u $. | | | | | | | | N_u^{out} Successors of u , nodes such as $(u,v) \in E$ in a directed | | | | | | | | ı | | graph | | | | | | | | N_u^{in} | Predecessors of u , nodes such as $(v, u) \in E$ in a directed | | | | | | | | | graph | | | | | | | | k_u^{out} | Out-degree of u , number of outgoing edges $ N_u^{out} $. | | | | | | | | k_u^{out} Out-degree of u , number of outgoing edges $ N_u^{out} $. k_u^{in} In-degree of u , number of incoming edges $ N_u^{in} $ | | | | | | | | | $\overline{w_{u,v}}$ | Weight of edge (u, v) . | | | | | | | | s_u | Strength of u , sum of weights of adjacent edges, $s_u =$ | | | | | | | | | $\sum_{v} w_{uv}$. | | | | | | | | | | | | | | | ## Node degree #### Number of connections of a node Undirected network Directed network In degree Out degree ## SIZE ## Counting nodes and edges $N/n \ L/m \ L_{max}$ **size**: number of nodes |V|. number of edges |E| Maximum number of links Undirected network: $${N \choose 2} = N(N-1)/2$$ Directed network: $$\binom{N}{2} = N(N-1)$$ ## DENSITY ### Network descriptors 1 - Nodes/Edges Average degree: Real networks are sparse, i.e., typically $\langle k \rangle \ll n$. Increases slowly with network size, e.g., $d \sim \log(m)$ $$\langle k \rangle = \frac{2m}{n}$$ **Density**: Fraction of pairs of nodes connected by an edge in G. $$d = L/L_{\rm max}$$ ## DENSITY | | #nodes | #edges | Densité | Deg. Moyen | | |---------------------|--------|--------|----------------------|------------|--| | Wikipedia
HL | 2M | 30M | 1.5x10 ⁻⁵ | 30 | | | Twitter 2015 | 288M | 60B | 1.4x10 ⁻⁶ | 416 | | | Facebook
2015 | 1.4B | 400B | 4x10 ⁻⁹ | 570 | | | Brain c.
Elegans | 280 | 6393 | 0,16 | 46 | | | Roads Calif. | 2M | 2.7M | 6x10 ⁻⁷ | 2,7 | | | Airport
traffic | 3k | 31k | 0,007 | 21 | | Attention: It's difficult to compare density of graphs with different sizes ## DEGREE DISTRIBUTION PDF (Probability Distribution Function) ## DEGREE DISTRIBUTION - In a fully random graph (Erdos-Renyi), degree distribution is (close to) a normal distribution centered on the average degree - · In real graphs, in general, it is not the case: - A high majority of small degree nodes - A small minority of nodes with very high degree (Hubs) - · Often modeled by a power law - More details later in the course - Clustering coefficient or triadic closure - Triangles are considered important in real networks - ► Think of social networks: *friends of friends are my friends* - # triangles is a big difference between real and random networks C_u - **Node clustering coefficient:** density of the subgraph induced by the neighborhood of u, $C_u=d(H(N_u))$. Also interpreted as the fraction of all possible triangles in N_u that exist, $\frac{\delta_u}{\delta_u^{\max}}$ Edges: 2 Max edges: 4*3/2=6 $C_u = 2/6 = 1/3$ Triangles=2 Possible triangles= $$\binom{4}{2}$$ =6 $$C_u$$ =2/6=1/3 ## SUBGRAPHS #### **Subgraphs** **Subgraph** H(W) (induced subgraph): subset of nodes W of a graph G = (V, E) and edges connecting them in G, i.e., subgraph H(W) = $(W, E'), W \subset V, (u, v) \in E' \iff u, v \in W \land (u, v) \in E$ **Clique**: subgraph with d=1 Triangle: clique of size 3 Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph Figure after Newman, 2010 Nodes/Edges in the subgraph $\langle C \rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C}=\frac{1}{N}\sum_{u\in V}C_u$. Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their degree, and that low degree nodes tend to be much more frequent than hubs, and their C value is very sensitive, i.e., for a node u of degree 2, $C_u \in 0, 1$, while nodes of higher degrees tend to have more contrasted scores. C^g - **Global clustering coefficient:** Fraction of all possible triangles in the graph that do exist, $C^g= rac{3\Delta}{\Delta^{max}}$ Global CC = Transitivity #### Transitivity vs. Average Clustering Coefficient Both measure the tendency for edges to form triangles. Transitivity weights nodes with large degree higher. - Most nodes have high LCC - The high degree node has low LCC - Most nodes have low LCC - High degree node have high LCC Ave. clustering coeff. = 0.93 Transitivity = 0.23 Ave. clustering coeff. = 0.25 Transitivity = 0.86 #### Global CC: - ► In random networks, GCC = density - =>very small for large graphs | Network | Size | $\langle k \rangle$ | С | C_{rand} | Reference | |--------------------------|-----------|---------------------|----------|----------------------|--------------------------------| | WWW, site level, undir. | 153 127 | 35.21 | 0.1078 | 0.00023 | Adamic, 1999 | | Internet, domain level | 3015-6209 | 3.52-4.11 | 0.18-0.3 | 0.001 | Yook et al., 2001a, | | | | | | | Pastor-Satorras et al., 2001 | | Movie actors | 225 226 | 61 | 0.79 | 0.00027 | Watts and Strogatz, 1998 | | LANL co-authorship | 52 909 | 9.7 | 0.43 | 1.8×10^{-4} | Newman, 2001a, 2001b, 2001c | | MEDLINE co-authorship | 1 520 251 | 18.1 | 0.066 | 1.1×10^{-5} | Newman, 2001a, 2001b, 2001c | | SPIRES co-authorship | 56 627 | 173 | 0.726 | 0.003 | Newman, 2001a, 2001b, 2001c | | NCSTRL co-authorship | 11 994 | 3.59 | 0.496 | 3×10^{-4} | Newman, 2001a, 2001b, 2001c | | Math. co-authorship | 70 975 | 3.9 | 0.59 | 5.4×10^{-5} | Barabási et al., 2001 | | Neurosci. co-authorship | 209 293 | 11.5 | 0.76 | 5.5×10^{-5} | Barabási et al., 2001 | | E. coli, substrate graph | 282 | 7.35 | 0.32 | 0.026 | Wagner and Fell, 2000 | | E. coli, reaction graph | 315 | 28.3 | 0.59 | 0.09 | Wagner and Fell, 2000 | | Ythan estuary food web | 134 | 8.7 | 0.22 | 0.06 | Montoya and Solé, 2000 | | Silwood Park food web | 154 | 4.75 | 0.15 | 0.03 | Montoya and Solé, 2000 | | Words, co-occurrence | 460.902 | 70.13 | 0.437 | 0.0001 | Ferrer i Cancho and Solé, 2003 | | Words, synonyms | 22 311 | 13.48 | 0.7 | 0.0006 | Yook et al., 2001b | | Power grid | 4941 | 2.67 | 0.08 | 0.005 | Watts and Strogatz, 1998 | | C. Elegans | 282 | 14 | 0.28 | 0.05 | Watts and Strogatz, 1998 | | | | | | | | ## PATH RELATED SCORES #### Paths - Walks - Distance **Walk**: Sequences of adjacent edges or nodes (e.g., **1.2.1.6.5** is a valid walk) Path: a walk in which each node is distinct. Path length: number of edges encountered in a path Weighted Path length: Sum of the weights of edges on a path **Shortest path**: The shortest path between nodes u, v is a path of minimal path length. Often it is not unique. Weighted Shortest path: path of minimal weighted path length. $\ell_{u,v}$: **Distance**: The distance between nodes u,v is the length of the shortest path ## PATH RELATED SCORES ### **Network descriptors 2 - Paths** $rac{\ell_{ ext{max}}}{\langle \ell angle}$ **Diameter**: maximum *distance* between any pair of nodes. **Average distance**: $$\langle \ell \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij}$$ ## All shortest path algorithm finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles) Checking and updating all paths going through nodes k=1, 2, 3, ..., N by assuming that: $$shp(i,j,k)=$$ $min(shp(i,j,k-1)), shp(i,k,k-1)+shp(k,j,k-1))$ Complexity: $O(n^3)$ ## AVERAGE PATH LENGTH - The famous 6 degrees of separation (Milgram experiment) - (More on that next slide) - Not too sensible to noise - · Tells you if the network is "stretched" or "hairball" like # SIDE-STORY: MILGRAM EXPERIMENT - Small world experiment (60's) - Give a (physical) mail to random people - Ask them to send to someone they don't know - They know his city, job - They send to their most relevant contact - · Results: In average, 6 hops to arrive # SIDE-STORY: MILGRAM EXPERIMENT - Many criticism on the experiment itself: - Some mails did not arrive - Small sample - **•** ... - · Checked on "real" complete graphs (giant component): - MSN messenger - Facebook - The world wide web **.** . . . # SIDE-STORY: MILGRAM EXPERIMENT Facebook ## SMALL WORLD #### **Small World Network** A network is said to have the **small world** property when it has some structural properties. The notion is not quantitatively defined, but two properties are required: - Average distance must be short, i.e., $\langle \ell \rangle \approx \log(N)$ - Clustering coefficient must be high, i.e., much larger than in a random network , e.g., $C^g\gg d$, with d the network density ## NETWORK DESCRIPTORS - Many other network descriptors exist: - Modularity (later in community detection class) - Centralization (comparing the centrality scores between most central and less central, see later) - Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf random network class - Motif profiles (how often do specific subgraphs appear) - Network Resilience (see practicals) - etc. ## GRAPHLETS ## EXEMPLE OF GRAPH ANALYSIS - 721M users (nodes) (active in the last 28 days) - 68B edges - Average degree: 190 (average # friends) - Median degree: 99 - Connected component: 99.91% ## EXEMPLE OF GRAPH ANALYSIS Age homophily (More next class) ## EXEMPLE OF GRAPH ANALYSIS Many of my friends have the Same # of friends than me! ## CENTRALITIES Characterizing/Discovering important nodes ## CENTRALITY - We can measure nodes importance using so-called centrality. - · Poor terminology: nothing to do with being central in general - Usage: - Some centralities have straightforward interpretation - Centralities can be used as node features for machine learning on graph - (Classification, link prediction, ...) ### NODE DEGREE - Degree: how many neighbors - Often enough to find important nodes - Main characters of a series talk with the more people - Largest airports have the most connections - **.** . . . - But not always - Facebook users with the most friends are spam - Webpages/wikipedia pages with most links are simple lists of references **•** ... # FARNESS, CLOSENESS HARMONIC CENTRALITY # FARNESS, CLOSENESS - How close the node is to all other nodes - Parallel with the center of a figure: - Center of a circle is the point of shorter average distance to any points in the circle # FARNESS, CLOSENESS Farness: Average distance to all other nodes in the graph $$\operatorname{Farness}(u) = \frac{1}{N-1} \sum_{v \in V \setminus u} \ell_{u,v}$$ ### CLOSENESS CENTRALITY **Closeness:** Inverse of the farness, i.e., how close the node is to all other nodes in term of shortest paths. $$\mathsf{Closeness}(u) = \frac{N-1}{\sum_{v \in V \setminus u} \ell_{u,v}}$$ $$C_{cl}(i) = \frac{12-1}{(3\times1+7\times2+1\times3)} = \frac{11}{20} = 0.55$$ ## CLOSENESS CENTRALITY **Closeness:** Inverse of the farness, i.e., how close the node is to all other nodes in term of shortest paths. $$\mathsf{Closeness}(u) = \frac{N-1}{\sum_{v \in V \setminus u} \ell_{u,v}}$$ 1=all nodes are at distance one #### Harmonic Centrality **Harmonic centrality:** A variant of the closeness defined as the average of the inverse of distance to all other nodes (Harmonic mean). Well defined on disconnected network with $\frac{1}{\infty} = 0$. Its interpretation is the same as the closeness. $$\mathsf{Harmonic}(u) = \frac{1}{N-1} \sum_{v \in V \setminus u} \frac{1}{\ell_{u,v}}$$ $$C_h(i) = \frac{1}{12 - 1} \left(3 \times \frac{1}{1} + 7 \times \frac{1}{2} + 1 \times \frac{1}{3} \right) = \frac{41}{66} = 0.6212$$ ### BETWEENNESS CENTRALITY - · Measure how much the node plays the role of a bridge - Betweenness of u: fraction of all the shortest paths between all the pairs of nodes going through u. $$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$ with σ_{st} the number of shortest paths between nodes s and t and $\sigma_{st}(v)$ the number of those paths passing through v. The betweenness tends to grow with the network size. A normalized version can be obtained by dividing by the number of pairs of nodes, i.e., for a directed graph: $C_B^{\text{norm}}(v) = \frac{C_B(v)}{(N-1)(N-2)}$. #### Betweenness Centrality $$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$ directed graph: $C_B^{\mathsf{norm}}(v) = \frac{C_B(v)}{(N-1)(N-2)}$. $$C_B(u) = 2\frac{5*6+1+\frac{1}{2}+\frac{1}{2}}{11*10} = \frac{64}{110}$$ #### **Exact computation:** **Floyd-Warshall:** $O(n^3)$ time complexity $O(n^2)$ space complexity #### **Approximate computation** **Dijskstra:** $O(n(m+n \log n))$ time complexity # BETWEENNESS CENTRALITY (red higher) ### EDGE - BETWEENNESS Same definition as for nodes Can you guess the edge of highest betweenness in the European rail network? # RECURSIVE DEFINITIONS ### RECURSIVE DEFINITIONS - Recursive importance: - Important nodes are those connected to important nodes - · Several centralities based on this idea: - Eigenvector centrality - PageRank - **.** . . . #### RECURSIVE DEFINITION - · We would like scores such as: - Each node has a score (centrality), - If every node "sends" its score to its neighbors, the sum of all scores received by each node will be equal to its original score $$C_u^{t+1} = \frac{1}{\lambda} \sum_{v \in N_u^{in}} C_v^t \tag{1}$$ • With λ a normalisation constant ### RECURSIVE DEFINITION - This problem can be solved by what is called the power method: - ▶ 1) We initialize all scores to random values - 2) Each score is updated according to the desired rule, until reaching a stable point (after normalization) - Why does it converge? - Perron-Frobenius theorem (see next slide) - =>True for undirected graphs with a single connected component # ADJACENCY MATRIX ## EIGENVECTOR CENTRALITY - · What we just described is called the Eigenvector centrality - A couple eigenvector (x) and eigenvalue (λ) is defined by the following relation: $Ax = \lambda x$ - $\rightarrow x$ is a column vector of size n, which can be interpreted as the scores of nodes - What Perron-Frobenius algorithm says is that the power method will always converge to the *leading eigenvector*, i.e., the eigenvector associated with the highest eigenvalue #### Eigenvector Centrality #### Some problems in case of directed network: - Adjacency matrix is asymmetric - 2 sets of eigenvectors (Left & Right) - 2 leading eigenvectors - Use right eigenvectors: consider nodes that = Its centrality will be 0 -etc. **Solution**: Only in strongly connected component Note: Acyclic networks (citation network) do not have strongly connected component #### PageRank Centrality Eigenvector centrality generalised for directed networks # PageRank The Anatomy of a Large-Scale Hypertextual Web Search Engine Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia. Sergey Brin and Lawrence Page Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu #### PageRank Centrality Eigenvector centrality generalised for directed networks # PageRank The Anatomy of a Large-Scale Hypertextual Web Search Engine Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia. Sergey Brin and Lawrence Page Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu #### Abstract In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/ ### PAGERANK - 2 main improvements over eigenvector centrality: - In directed networks, problem of source nodes - => Add a constant centrality gain for every node - Nodes with very high centralities give very high centralities to all their neighbors (even if that is their only in-coming link) - => What each node "is worth" is divided equally among its neighbors (normalization by the degree) $$C_u^{t+1} = \frac{1}{\lambda} \sum_{v \in N_u^{in}} C_v^t = \sum_{v \in N_u^{in}} \frac{C_v^t}{k_v^{out}} + \beta$$ With by convention β =1 and α a parameter (usually 0.85) controlling the relative importance of β ### PAGERANK Matrix interpretation Principal eigenvector of the "Google Matrix": First, define matrix S as: - -Normalization by columns of A - -Columns with only 0 receives 1/n (dead end) -Finally, $$G_{ij} = \alpha S_{ij} + (1 - \alpha)/n$$ Removing some trip probability from out-link And distributing them at random among other nodes ((1-0.85)/5=0.03) #### PageRank - as Random Walk Main idea: The PageRank computation can be interpreted as a Random Walk process with restart **Teleportation probability:** the parameter α gives the probability that in the next step of the RW will follow a Markov process or with probability $1-\alpha$ it will jump to a random node Pagerank score of a node thus corresponds to the probability of this random walker to be on this node after an infinite number of hops. #### PAGERANK - Then how do Google rank when we do a research? - Compute pagerank (using the power method for scalability) - Create a subgraph of documents related to our topic - Of course now it is certainly much more complex, but we don't really know: "Most search engine development has gone on at companies with little publication of technical details. This causes search engine technology to remain largely a black art" [Page, Brin, 1997] ### OTHERS - Many other centralities have been proposed - ► 50+ (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646361/) - The problem is how to interpret them? - · Can be used as supervised tool: - Compute many centralities on all nodes - Learn how to combine them to find chosen nodes - Discover new similar nodes - (roles in social networks, key elements in an infrastructure, ...) #### Which is which? Degree Clustering coefficient Closeness Harmonic Centrality Betweenness Eigenvector PageRank #### Which is which? Degree Clustering coefficient Closeness Harmonic Centrality Betweenness Eigenvector PageRank Try again:) Degree Betweenness Closeness Eigenvector Try again:) Degree: A Betweenness: C Closeness: B Eigenvector: D