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NETWORKS/GRAPHS
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NETWORKS/GRAPHS

• Structured data
‣ Text

- Sequence. Each item is before or after the other ones. And it is important

- 1D organisation

‣ Images

- Each pixel has a position in 2D grid, it is on the left, right, top or bottom compared with the 

other ones. And it is important

- 2D organisation

‣ Variants: Video (3D), time series (1D continuous), spatial (2D/3D continuous), 

etc.

‣ Networks: Neighborhoods are not constrained. The graph is the structure

- Generalization of discrete structures (text, images, videos)
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NETWORKS ARE 

EVERYWHERE
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150 years of Nature: a data graphic charts our evolution

Nature 150 Interactive

150 YEARS OF PUBLICATIONS

Sources:

Ce réseau décrypte 150 ans de découvertes scientifiques
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https://www.nature.com/articles/d41586-019-03305-w
https://www.nature.com/immersive/d41586-019-03165-4/index.html
https://www.youtube.com/watch?v=1xe3zy2mU2M


GRAPHS & NETWORKS

Networks often refers to real systems
•www,
•social network
•metabolic network. 
•Language: (Network, node, link) 

In most cases we will use the two terms interchangeably. 

Graph is the mathematical 
representation of a network
•Language: (Graph, vertex, edge) 

Vertex Edge

person friendship

neuron synapse

Website hyperlink

company ownership

gene regulation
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NETWORK 

REPRESENTATIONS
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GRAPH REPRESENTATION
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Node degree

Number of connections of a node
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SIZE
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DENSITY 

12



DENSITY

#nodes #edges Densité Deg. Moyen

Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416

Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 

Elegans
280 6393 0,16 46

Roads Calif. 2M 2.7M 6x10-7 2,7

Airport 

traffic
3k 31k 0,007 21

Attention: It’s difficult to compare density of 

graphs with different sizes
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DEGREE DISTRIBUTION

PDF (Probability Distribution Function)
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DEGREE DISTRIBUTION

• In a fully random graph (Erdos-Renyi), degree distribution is 

(close to) a normal distribution centered on the average 

degree 

• In real graphs, in general, it is not the case:
‣ A high majority of small degree nodes

‣ A small minority of nodes with very high degree (Hubs)

• Often modeled by a power law
‣ More details later in the course
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CLUSTERING COEFFICIENT

• Clustering coefficient or triadic closure

• Triangles are considered important in real networks
‣ Think of social networks: friends of friends are my friends

‣ # triangles is a big difference between real and random networks
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CLUSTERING COEFFICIENT

u
Triangles=2

Possible triangles= 4
2

=6

𝐶𝑢=2/6=1/3Edges: 2
Max edges: 4*3/2=6

𝐶𝑢=2/6=1/3
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SUBGRAPHS

After “A. DZY Loves Physics”

Nodes/Edges

in the subgraph
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CLUSTERING COEFFICIENT
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CLUSTERING COEFFICIENT

https://pynetwork.readthedocs.io/en/latest/connectivity.html

Global CC = Transitivity
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CLUSTERING COEFFICIENT
• Global CC:

‣ In random networks, GCC = density

- =>very small for large graphs 

Albert, R. et.al. Rev. Mod. Phy. (2002)
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PATH RELATED SCORES
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PATH RELATED SCORES
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All shortest path algorithm

proc FloydWarshall(G=(V,E,w))

1 // let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)

2 for each edge (u,v)

3    dist[u][v] ← w(u,v)  // the weight of the edge (u,v)

4 for each vertex v

5    dist[v][v] ← 0

6 for k from 1 to |V|

7    for i from 1 to |V|

8       for j from 1 to |V|

9          if dist[i][j] > dist[i][k] + dist[k][j] 

10             dist[i][j] ← dist[i][k] + dist[k][j]

11         end if

finding shortest paths in a weighted graph with positive or negative edge weights

(but with no negative cycles)

Checking and updating all paths going 

through nodes k=1, 2, 3, … , N by 

assuming that:

Complexity: O(n3)

shp(i,j,k)=

min(shp(i,j,k-1)), shp(i,k,k-1)+shp(k,j,k-1))
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AVERAGE PATH LENGTH

• The famous 6 degrees of separation (Milgram experiment)
‣ (More on that next slide)

• Not too sensible to noise

• Tells you if the network is “stretched” or “hairball” like
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SIDE-STORY: MILGRAM 

EXPERIMENT

• Small world experiment (60’s)
‣ Give a (physical) mail to random people

‣ Ask them to send to someone they don’t know

- They know his city, job

‣ They send to their most relevant contact

• Results: In average, 6 hops to arrive
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SIDE-STORY: MILGRAM 

EXPERIMENT

• Many criticism on the experiment itself: 
‣ Some mails did not arrive

‣ Small sample

‣ …

• Checked on “real” complete graphs (giant component):
‣ MSN messenger

‣ Facebook

‣ The world wide web

‣ …
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SIDE-STORY: MILGRAM 

EXPERIMENT

Facebook
28



SMALL WORLD
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NETWORK DESCRIPTORS

• Many other network descriptors exist: 
‣ Modularity (later in community detection class)

‣ Centralization (comparing the centrality scores between most central and less 

central, see later)

‣ Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf 

random network class

‣ Motif profiles (how often do specific subgraphs appear)

‣ Network Resilience (see practicals)

‣ etc.
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GRAPHLETS
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EXEMPLE OF GRAPH ANALYSIS

• 721M users (nodes) (active in the last 28 days)

• 68B edges

• Average degree: 190 (average # friends)

• Median degree: 99

• Connected component: 99.91%
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EXEMPLE OF GRAPH ANALYSIS

Age homophily

(More next class)
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EXEMPLE OF GRAPH ANALYSIS

Many of my friends have the 

Same # of friends than me!
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CENTRALITIES
Characterizing/Discovering important nodes
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CENTRALITY

• We can measure nodes importance using so-called centrality. 

• Poor terminology: nothing to do with being central in general

• Usage:
‣ Some centralities have straightforward interpretation

‣ Centralities can be used as node features for machine learning on graph

- (Classification, link prediction, …)
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NODE DEGREE

• Degree: how many neighbors

• Often enough to find important nodes
‣ Main characters of a series talk with the more people

‣ Largest airports have the most connections

‣ …

• But not always
‣ Facebook users with the most friends are spam

‣ Webpages/wikipedia pages with most links are simple lists of references

‣ …
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FARNESS, CLOSENESS

HARMONIC CENTRALITY
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FARNESS, CLOSENESS

• How close the node is to all other nodes

• Parallel with the center of a figure:
‣ Center of a circle is the point of shorter average distance to any points in the 

circle
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FARNESS, CLOSENESS
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CLOSENESS CENTRALITY

1

2 2

2

22

1

12

2

3

𝐶𝑐𝑙(𝑖) =
12 − 1

3 × 1 + 7 × 2 + 1 × 3
=
11

20
= 0.55

i

41



CLOSENESS CENTRALITY

1=all nodes are at distance one
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Harmonic Centrality

𝐶ℎ(𝑖) =
1

12 − 1
3 ×

1

1
+ 7 ×
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BETWEENNESS CENTRALITY

• Measure how much the node plays the role of a bridge

• Betweenness of u: fraction of all the shortest paths between all 

the pairs of nodes going through u.
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Betweenness Centrality

u

𝐶𝐵(𝑢) = 2
5 ∗ 6 + 1 +

1
2
+
1
2

11 ∗ 10
=

64

110

Exact computation:

Floyd-Warshall:  O(n3) time complexity 

O(n2) space complexity

Approximate computation

Dijskstra: O(n(m+n log n)) time complexity 
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BETWEENNESS CENTRALITY

(blue higher) (red higher)
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EDGE - BETWEENNESS 

Can you guess the edge of

highest betweenness in 

the European rail network ?

Same definition as for nodes
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RECURSIVE DEFINITIONS
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RECURSIVE DEFINITIONS

• Recursive importance:
‣ Important nodes are those connected to important nodes

• Several centralities based on this idea:
‣ Eigenvector centrality

‣ PageRank

‣ …
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RECURSIVE DEFINITION

• We would like scores such as :
‣ Each node has a score (centrality), 

‣ If every node “sends” its score to its neighbors, the sum of all scores received by 

each node will be equal to its original score

• With 𝜆 a normalisation constant
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RECURSIVE DEFINITION

• This problem can be solved by what is called the power 
method:
‣ 1) We initialize all scores to random values

‣ 2)Each score is updated according to the desired rule, until reaching a stable 

point (after normalization)

• Why does it converge?
‣ Perron-Frobenius theorem (see next slide)

‣ =>True for undirected graphs with a single connected component
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ADJACENCY MATRIX
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EIGENVECTOR CENTRALITY

• What we just described is called the Eigenvector centrality

• A couple eigenvector (𝑥) and eigenvalue (𝜆) is defined by the 

following relation: 𝐴𝑥 = 𝜆𝑥
‣ 𝑥 is a column vector of size n, which can be interpreted as the scores of nodes

• What Perron-Frobenius algorithm says is that the power 

method will always converge to the leading eigenvector, i.e., 

the eigenvector associated with the highest eigenvalue
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Eigenvector Centrality
Some problems in case of directed network:

• Adjacency matrix is asymmetric

• 2 sets of eigenvectors (Left & Right)

• 2 leading eigenvectors 

• Use right eigenvectors : consider nodes that 

are pointing towards you 
-Vertex A is connected but has only outgoing link = Its centrality will be 0 

-Vertex B has outgoing and an incoming link, but incoming link comes from A 

= Its centrality will be 0 

-etc.

Solution: Only in strongly connected component 

Note: Acyclic networks (citation network) do not have strongly connected component 54



PageRank Centrality

• Eigenvector centrality generalised for directed networks
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PageRank Centrality

• Eigenvector centrality generalised for directed networks

56



PAGERANK

• 2 main improvements over eigenvector centrality: 
‣ In directed networks, problem of source nodes

- => Add a constant centrality gain for every node

‣ Nodes with very high centralities give very high centralities to all their neighbors 

(even if that is their only in-coming link)

- => What each node “is worth” is divided equally among its neighbors (normalization by the 

degree)

=>

With by convention 𝛽=1 and 𝛼 a parameter (usually 0.85) controlling the 

relative importance of 𝛽
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PAGERANK
Matrix interpretation
Principal eigenvector of the “Google Matrix”:

First, define matrix S as:

-Normalization by columns of A

-Columns with only 0 receives 1/n (dead end)

-Finally, 𝐺𝑖𝑗 = 𝛼𝑆𝑖𝑗 + (1 − 𝛼)/𝑛
Removing some trip probability from out-link

And distributing them at random among other nodes
((1-0.85)/5=0.03)
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PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk 

process with restart

Teleportation probability: the parameter α gives the probability that in the next step of 

the RW will follow a Markov process or with probability 1-α it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on 

this node after an infinite number of hops.
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PAGERANK

• Then how do Google rank when we do a research?

• Compute pagerank (using the power method for scalability)

• Create a subgraph of documents related to our topic

• Of course now it is certainly much more complex, but we don’t really know:  

“Most search engine development has gone on at companies with little publication of technical 

details. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]
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OTHERS

• Many other centralities have been proposed
‣ 50+ (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646361/)

• The problem is how to interpret them ?

• Can be used as supervised tool:
‣ Compute many centralities on all nodes

‣ Learn how to combine them to find chosen nodes

‣ Discover new similar nodes

‣ (roles in social networks, key elements in an infrastructure, …)
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646361/


Degree

Clustering coefficient

Closeness

Harmonic Centrality

Betweenness

Eigenvector

PageRank

Which is which ?
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Degree

Clustering coefficient

Closeness

Harmonic Centrality

Betweenness

Eigenvector

PageRank

Which is which ?
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Try again :)

Degree

Betweenness

Closeness

Eigenvector
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Try again :)

Degree: A

Betweenness: C

Closeness: B

Eigenvector: D
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