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NETWORKS/GRAPHS
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. Structured data

Text
- Sequence. Each item is before or after the other ones. And it is important

]
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- 1D organisation

v

Images

- Each pixel has a position in 2D grid, it is on the left, right, top or bottom compared with the
other ones. And it is important

- 2D organisation
Variants: Video (3D), time series (1D continuous), spatial (2D/3D continuous),
etc.

v

Networks: Neighborhoods are not constrained. The graph is the structure

v

- Generalization of discrete structures (text, images, videos)
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150 YEARS OF PUBLICATIONS

/ \

r4

Sources:
150 years of Nature: a data sraphic charts our evolution

Nature 150 Interactive
Ce réseau décrypte 150 ans de découvertes scientifigues



https://www.nature.com/articles/d41586-019-03305-w
https://www.nature.com/immersive/d41586-019-03165-4/index.html
https://www.youtube.com/watch?v=1xe3zy2mU2M

GRAPHS & NETWORKS

Networks often refers to real systems .\.
*WWW,

esocial network
emetabolic network.
eLanguage: (Network, node, link)

Graph is the mathematical person | friendship

representatiOn of a network neuron Synapse
eLanguage: (Graph, vertex, edge)

Website | hyperlink
company lownership

gene | regulation

In most cases we will use the two terms interchangeably.
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NETVWORK
REPRESENTATIONS

Networks: Graph notation

Graph notation: G = (V, E)
Vv set of vertices/nodes.
E set of edges/links.
ueV a node.
(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V ={1,2,3,4,5,6}
E ={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5),(5,5),(4,3)}




GRAPH REPRESENTATION

Node-Edge description

Neighbourhood of u, nodes sharing a link with w.

Degree of u, number of heighbors | N, |.

Successors of u, nodes such as (u,v) € FE in a directed
graph

Predecessors of u, nhodes such as (v,u) € E in a directed
graph

Out-degree of u, number of outgoing edges | N2“*|.
In-degree of u, number of incoming edges | N“"|

Weight of edge (u, v). '

Strength of u, sum of weights of adjacent edges, s, =

D 0 Wuw.




Node degree
Number of connections of a nhode

 Undirected network

In degree

Out degree

10



SIZE

Counting nodes and edges

size: number of nodes |V|.
number of edges | E|
Maximum number of links

N
Undirected network: (2) =N(N—-1)/2

N
Directed network: (2) = N(N —1)

11



DENSITY

Network descriptors 1 - Nodes/Edges

Average degree: Real networks are sparse, i.e., typically
(k) < mn. Increases slowly with network size, eg., d ~

log(m)

(k) =

Density: Fraction of pairs of hodes connected by an edge in
G.

d = L/Lmax

12



DENSITY

#nodes #edges Densité Deg. Moyen

Wikipedia

5
L . Mo oM Ladem o
Twitter 2015 e 288M  60B  14x10° 416
Facebook 9
2015 [ R wee wes 0
Blraln ¢. 280 6393 0.16 46
Elegans | e L
Roads Calii. [ oM 27M  ex107 2,
ATPonL 3K 31k 0,007 21

iglnile

Attention: It's difficult to compare density of
oraphs with different sizes

13



DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

'.

P(V) (hnumber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)

14



DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is
(close to) a normal distribution centered on the average
degree

- In real graphs, in general, it is not the case:

> A high majority of small degree nodes
> A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law
» More details later in the course

15



CLUSTERING COEFFICIENT

e Clustering coefficient or triadic closure

- [riangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles is a big difference between real and random networks

16



CLUSTERING COEFFICIENT

C. - Node clustering coefficient: density of the subgraph induced by the

neighborhood of u, C,, = d(H (N, ). Also interpreted as the fraction of all

possible triangles in N, that exist, s

O
- ¢ Triangles=2
Possible triangles=(g)=6
Edges: 2 C,=2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3

17




SUBGRAPHS

Subgraphs

Subgraph H (W) (induced subgraph): subset of nodes W of a graph
G = (V, E) and edges connecting them in G, i.e., subgraph H(W) =
(W,E"),W CV,(u,v) € E' < u,ve€ WA (u,v) €EE

Clique: subgraph withd = 1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are con- @
nected to each other by paths, and which is connected to no additional ver-

tices in the supergraph @

Figure after Newman, 2010

A N

Q O
VA ]

original graph w4 X

not an induced subgraph

® | Nodes/Edges
in the subgraph

After “A. DZY Loves Physics”



CLUSTERING COEFFICIENT

(C) - Average clustermg coefficient: Average clustering coefficient of all

nodes in the graph, C = N Zuev

Be careful when interpreting this value, since all nodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C value is very sensitive, 1.e., for a node u of de-
gree 2, Cy, € 0,1, while nodes of higher degrees tend to
have more contrasted scores.

C? - Global clustering coefficient: Fraction of all possible triangles in the
graph that do exist, C9 = 34

19



CLUSTERING COEFFICIENT

Global CC = Transitivity

Transitivity vs. Average Clustering Coefficient

Both measure the tendency for edges to form triangles.
Transitivity weights nodes with large degree higher.

* Most nodes have

- \ /
N\  Most nodes have , ,
/Q % high LCC . Va ﬁ\ —  lowLCC
B

* The high degree High degree node
\4 vl node has low LCC

have high LCC
—"

Ave. clustering coeff. = 0.93 Ave. clustering coeff. = 0.25
Transitivity = 0.23 Transitivity = 0.86

https:// pynetvvork.readthedoczgio/en/ atest/connectivity.html



CLUSTERING COEFFICIENT

- Global CC:

» In random networks, GCC = density

- =>very small for large graphs

Network Size (k) C C,and Reference
WWW, site level, undir. 153127 35.21 0.1078  0.00023 Adamic, 1999
Internet, domain level 3015-6209 3.52-4.11 ).18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 043 1.8X10°% Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 0.066 1.1X10°° Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 0496 3X10°* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 0.59 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 0.76  5.5x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 22 0.06 Montoya and Solé, 2000
Silwood Park food web 154 4.75 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 22311 13.48 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 0.28 0.05 Watts and Strogatz, 1998

21
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PATH RELATED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes w, v is a path of minimal
path length. Often it is hot unique.

Weighted Shortest path: path of minimal weighted path length.

¢....: Distance: The distance between nodes u, v is the length of the short-
est path




PATH RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
= n(n — 1) ;dij

23



All shortest path algorithm

finding shortest paths in a weighted graph with positive or negative edge weights
(but with no negative cycles)

proc FloydWarshall (G=(V,E,w))
1 // let dist be a |V| x |V| array of minimum distances initialized to « (infinity)
2 for each edge (u,v)
3 dist[u] [v] « w(u,v) // the weight of the edge (u,vV)
for each vertex v
dist[v][v] « O
for k from 1 to |V|
for 1 from 1 to |V|
for 7 from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][7]
dist[i][J] < dist[i][k] + dist[k][7]
end if

R = O 0O J o O b

= O

k = 4:
Checking and updating all paths going @@@ i@
through nodes k=1, 2, 3, ..., N by i@
assuming that: @,@ O0=020 00200
shp(ij k)= !@*@*@*@

min(shp(i.j.k-1)), shp(i.k k-1)+shp(k j.k-1)) \\ @3@@
Complexity: O(n3) @@i@@

24




AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

- Not too sensible to noise

- Tells you if the network is “stretched” or “hairball” like

25



SIDE-STORY: MILGRAM
EXPERIMEN T

- Small world experiment (60's)

» Give a (physical) mail to random people

North Dakota

South Dakota

» Ask them to send to someone they don't know,
- They know his city, job
> They send to their most relevant contact

- Results: In average, 6 hops to arrive

26



SIDE-STORY: MILGRAM
EXPERIMEN T

- Many criticism on the experiment itself:

» Some mails did not arrive
» Small sample

- Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [ he world wide web

27



SIDE-STORY: MILGRAM
EXPERIMEN T

1251

|
: Mean = 3.57
|

),
~l o
¢ 3

Facebook users (millions
(63
o

25 27 29 31 33 35 37 39 41 43 45 47
Average degrees of separation

Facebook

28



SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

- Average distance must be short, i.e., (¢) = log(N)

 Clustering coefficient must be high, i.e., much larger than in a ran-
dom network , e.g., C? > d, with d the network density

29



NETWORK DESCRIPTORS

- Many other network descriptors exist:

» Modularity (later in community detection class)

» Centralization (comparing the centrality scores between most central and less
central, see later)

» Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf
random network class

» Motif profiles (how often do specific subgraphs appear)
» Network Resilience (see practicals)
> etc.

30



GRAPHLETS

2-nod _

gra%%lgt 3-node graphlets 4-node grapheufs
0 1
G() Gl ’) G G4
5@

S5-node graphlets

160D Q18
@ @ ?2
17@ © 20 9
280
® 19 27

G9 Glo Gll Gl’) Gl%
52N
/Ny 8
L X

49 € S
50 57 .

GZO G21 G 29

o
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EXEMPLE OF GRAPH ANALYSIS

- /21M users (nodes) (active in the last 28 days)
- 63B edges

- Average degree: 190 (average # friends)

- Median degree: 99

- Connected component: 99.91%

32



EXEMPLE OF GRAPH ANALYSIS

&
© — Age 20
= Age 30
L Age 40
o w— Age 50
- e Age 60
.% = == Random edge |
g S Age homophily
3
o
3 _ (More next class)
o

20 40 60 80 100
Neighbor’s age
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EXEMPLE OF GRAPH ANALYSIS

e Degree 10
=== Degree 50
Degree 100
== Degree 500
=== Random edge

ction

Fra
0.000 0.005 0.010 0.015

| I [ || |
1 5 50 500 5000

Neighbor’s degree

Many of my friends have the
Same # of friends than mel
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CENTRALITIES

Characterizing/Discovering important nodes

35



CENTRALITY

- VWe can measure nodes importance using so-called centrality.
- Poor terminology: nothing to do with being central in general
- Usage:

» Some centralities have straightforward interpretation
» Centralities can be used as node features for machine learning on graph

- (Classification, link prediction, ...)

36



NODE DEGREE

» Degree: how many neighbors

- Often enough to find important nodes
» Main characters of a series talk with the more people

» Largest airports have the most connections

> L I |

- But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

> LI T |

37



FARNESS, CLOSENESS
HARMONIC CENTRALITY



FARNESS, CLOSENESS

- How close the node is to all other nodes

- Parallel with the center of a figure;

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighhed

39



FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

1
Farness(u) = o E Lu,v
- veV\u

40



CLOSENESS CENTRALITY

Closeness: Inverse of the farness, i.e.,, how close the node is to all other
nodes in term of shortest paths.

N —1

Closeness(u) =

z'vEV\u Eu,,v

12 -1 _11_055
(3x1+7%x2+1x3) 20

Cer (i) =

41



CLOSENESS CENTRALITY

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

N —1
Closeness(u) =

ZvEV\u Eu,v

1=all nodes are at distance one

42
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AmsterdamPart_CLS_nolimit
Closeness
I 0.000000
[ 0,000001 - 0,000000
0,000001 - 0,000000
0,000001 - 0,000000
0,000001 - 0,000000
I 0.000001 - 0,007673
I 0.007674 - 0034569

Kilometers




Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of
the inverse of distance to all other nodes (Harmonic mean). Well defined
on disconnected network with L = 0. Its interpretation is the same as the
closeness.

1 1
Harmonic =
r iIc(u) ~ Z ;

1 2 3
43

, 1 1 1 1 41
Ch(l)=12_1 3IX=4+7X=4+1X=|=—=0.6212



BE T VWEENNESS CENTRALITY

- Measure how much the node plays the role of a bridge

- Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cp(v) = Z 75(v)

stvttey Ost

with os¢ the number of shortest paths between nodes s and ¢t and o4 (v)
the humber of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-

sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: CH™ (v) = (Nfg((;)_2).

44



Betweenness Centrality

Cg(v) = Z 20

stvttey I8t

‘ directed graph: C¥™ (v) = (Nf‘g((;})_m.

5*6+1+%+% 64
= 7 _ —
@) 11 * 10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation

Dijskstra: O(n(m+n log n)) time complexity
45



BE I VWWEENNESS CENTRALITY

Amsterdam Betweenness no limit

Betweennes

B o - 1945724

B 1945724 - 4393830

4393830 - 7638822

7638822 - 12495980

12495980 - 19088726

<
N N )
gesdd
8 ®» B2 X ZA
%&&mm 7
85%1 ‘ \
~ ™ - ;
8 B = 5 . ¢
-
© O © ©o &
~ eS8
SE535 2 £
MBWBW Yl
8 R8B ¢ /
- N ¥ © = ¥
>

1.8

1.2

24

- e Kilometers

0 0306

(red higher)

(blue higher)
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EDGE - BETWEENNESS

Same definition as for nodes

l'i o \_ ’%:}':U & f‘ﬁls tq N
ﬂ IO "'p E:TLC L”VA&I-A
( Wl ZE AN YO\/ENIg i
Can you guess the edge of " %.!‘ \( o it

| MONTE:JEG)QO LGARIA
highest betweenness in 0 - g\n
the European rail network ? o ‘%7" \i:*

47 —— ——



RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

- Recursive importance:
» Important nodes are those connected to important nodes

- Several centralities based on this idea:

» Eigenvector centrality
» PageRank

49



RECURSIVE DEFINITION

- We would like scores such as :

» Each node has a score (centrality),

» If every node “sends” its score to its neighbors, the sum of all scores received by
each node will be equal to its original score

1
. =3 2 G (1)
vEN,ﬂ”

- With A a normalisation constant

50



RECURSIVE DEFINITION

- [ his problem can be solved by what is called the power
method:

» 1) We initialize all scores to random values

» 2)Each score is updated according to the desired rule, until reaching a stable
point (after normalization)

- Why does it converge?

» Perron-Frobenius theorem (see next slide)
» =>True for undirected graphs with a single connected component

51



ADJACENCY MATRIX

A - Adjacency Mat.

0 10 0 1 1y
1 0 1 1 1 1
01 0 1 0 0
01 10 0 0
1 1.0 0 1 1

\1 1. 0 0 1 0/

52



EIGENVECTOR CENTRALITY

- VWhat we just described is called the Eigenvector centrality

- A couple eigenvector (x) and eigenvalue (A) is defined by the
following relation: Ax = Ax

» X is a column vector of size n, which can be interpreted as the scores of nodes

- VWhat Perron-rFrobenius algorithm says is that the power
method will always converge to the leading eigenvector, i.e,
the eigenvector associated with the highest eigenvalue

53



Eigenvector Centrality

Some problems in case of directed network:
- Adjacency matrix is asymmetric

. 2 sets of eigenvectors (Left & Right)

- 2 leading eigenvectors

4

| 1
- Use right eigenvectors : consider nodes that

-Vertex A is connected but has only outgoing link = Its centrality will be O
are pointing towards you

-Vertex B has outgoing and an incoming link, but incoming link comes from A

= Its centrality will be O

-etc.

Solution: Only in strongly connected component

Note: Acyclic networks (citation network) do gt have strongly connected component



PageRank Centrality

* Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey(@cs.stanford.edu and page@cs.stanford.edu

95



PageRank Centrality

* Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey @ cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satistying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 mmllion pages 1s available at http://google.stanford.edu/

56



PAGERANK

- 2 main improvements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even if that is their only in-coming link)

- => What each node “is worth” is divided equally among its neighbors (normalization by the

degree)
ottt — 4 ok t+1 C,
Y B ) : v :> C'U' = a Z kout +)6
vENIP veNEn Y

With by convention =1 and a a parameter (usually 0.85) controlling the

relative importance of [
57



PAGERANK

Matrix interpretation . @ (9110
Principal eigenvector of the "Google Matrix™: A=[0 1010
First, define matrix S as: 00010
-Normalization by columns of A @ (92 e e e
. : S = o 1/2 0 1/3 1/5
-Columns with only O receives 1/n (dead end) 0 0 s 0 13
\0 0 0 1/3 1/5
e [ 003 0455 0313 003 0.2
I —_— 0.88 0.03 0.313 0313 0.2
‘Fma”Y, GU = aSij + (1 I C()/Tl G=| 003 0455 003 0313 0.2
Removing some trip probability from out-link \ﬂﬂi Sﬂﬁ 33};3 Eifd 33
And distributing them at random among other nodes — -
((1-0.85)/5=0.03)
A - Adjacency Mat. Random W. mat.
0100 1 1 = 500 3 %\
1 0 1 1 1 1 1 91111
01 01 0 0 3 2243
{0 1 1 0 0 OJ 00300
1 1 0 0 1 1
1 100 1 0 013000
11001}
\{ L0010

58



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk

process with restart

Teleportation probability: the parameter a gives the probability that in the next step of

the RW will follow a Markov process or with probability 1-« it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on

this node after an infinite number of hops.

60



PAGERANK

- Then how do Google rank when we do a research!?
- Compute pagerank (using the power method for scalability)

- Create a subgraph of documents related to our topic

- Of course now it is certainly much more complex, but we don't really know:
“Most search engine development has gone on at companies with little publication of technical
details. This causes search engine technology to remain largely a black art™ [Page, Brin, 1997/]

61



O THERS

- Many other centralities have been proposed
» 50+ (https://www.ncbi.nlm.nih.sov/pmc/articles/PMC4646361/)

- [he problem is how to interpret them ¢

- Can be used as supervised tool:

Compute many centralities on all nodes

v

Learn how to combine them to find chosen nodes

v

Discover new similar nodes

v

(roles in social networks, key elements in an infrastructure, ...)

v
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VWhich is which ?

Degree
Clustering coefficient
Closeness
Harmonic Centrality
Betweenness
Figenvector
PageRank
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Try again

i
e

Rk I
Ss iy
e

ﬂ'._

. T
o e L

A ey
..r_-_,..-_‘_“l.mﬂ_ AN
L e

Degree
Betweenness

Closeness
Figenvector
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Try again

i
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Degree: A
Betweenness: C

Closeness: B
Figenvector: D
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