M2 TIW - M2 BIO-INFO

DATA ANALYSIS

Other Data Types Transformations

DATA TRANSFORMATION

- · Our data is provided in a given form
 - ► Tabular (vectors)
 - Network
 - Time series
 - Text
 - Images
 - **....**
- To use the full potential of data mining, you might want to study it from multiple angles
 - How to convert from tabular to graph?
 - From Graph to Tabular?
 - From images/text to tabular (embedding)?

DIMENSIONALITY REDUCTION

Low dimensionality embedding

DIMENSIONALITY REDUCTION

- Data Mining objective: understand our data
 - We get a dataset composed of many features
 - Or worst, complex object (image, sound, graph...)
 - How to understand the organization of our data?
 - How to perform clustering?

VISUALIZATION

- Your data is perfectly fine, but you want to intuitively understand how it is organized
 - Are there groups of similar objects?
 - Are my clusters meaningful?
 - ▶ Is my classification/clustering on some types of elements and not others.

VISUALIZATION

Example: MNIST Dataset Each pixel is a variable

t-SNE embedding

CURSE OF DIMENSIONALITY

- Having hundreds/thousands of attributes is a problem for data analysis.
 - e.g.: medicine: blood analysis, genomics....
 - e.g.: cooking recipes: each column an ingredient...
- We want to reduce the number of attributes while keeping most of the information
- Also helps with scalability

CORRELATION

- Assume that you have correlated features such as age, height and weight.
 - Redundancy! Computational Inefficiency
 - e.g., Decision tree will spend a lot of time choosing between them for no reason
 - Risk of overfitting
 - noise between correlated variables used to distinguish individuals
 - Model interpretability
 - e.g., a model will say that y depends on x or w randomly, if x and w correlated
- Dimensionality reduction can create a single variable to capture what is common
 - The rest can be lost or captured by another feature,
 - Engine horsepower, Car weight, Fuel Consumption
 - =>Performance index (horsepower and weight)
 - =>Efficiency score (weight and fuel consumption)

PCA

PCA

- PCA: Principal Component Analysis
- Defines new dimensions that are linear combinations of initial dimensions
 - Objective: concentrate the variance on some dimensions
 - So that we can keep only these ones.
 - Those we remove contain low variance, thus low information

PCA

Algorithm:

- ► 1)Find an "axis", a unit vector defining a line in the space
 - That minimizes the variance=>the squared distance 200000 from all points to that line
- 2) **For** d **in** [2:(initial_d)]
 - Find another axis, with two constraints:
 - Orthogonal to all previous axis
 - Among those, minimizing the variance
- 3) At the end, keep the first k dimensions
 - Some information is lost

EXAMPLE PCA 2D

Covariance matrix (original)

[1. , 0.98675899], [0.98675899, 1.]

Sum of variance

Variance by dimension

Covariance matrix (pca)

[1.98675899e+00, 0], [0, 1.32410092e-02]

Sum of variance

Variance by dimension
1.98675899 0.01324101

Explained variance(ratio)

[0.9933795, 0.0066205]

3D => 2D

CHOOSING COMPONENTS

- How to choose k?
 - ► Elbow method... BIC/AIC...
 - OR fix beforehand a min threshold of explained variance, e.g.: 80%
 - We are fine with losing 20% of information
 - If there is a downstream task, cross-validation

COMPUTATION IN PRACTICE

From standardized dataset X

Method 1:

- ▶ 1)Compute the Covariance Matrix (X^TX)
 - => Linear Correlation Matrix
- 2) Find the eigenvectors of this matrix
 - $X^T X = V \Lambda V^T$
 - V: eingenvectors = Pincipal components, Λ : Eigenvalues, = explained variance

Method 2:

- Apply SVD matrix decomposition
- $X = U\Sigma V^T$
 - U: left singular vectors. Σ : diagonal matrix with the singular values, V^T :right singular vectors (the principal components)

COMPUTATION IN PRACTICE

- V are the principal components
- Computing the new positions for each observation:
 - *▶ XV*

PCA POPULARITY

- Why is PCA popular?
- · Similar reasons than linear regression:
 - Useful
 - Eliminate correlations
 - Analytical solutions
 - Guarantee to find the global minimum of the objective
 - Could be done before modern computers
 - Interpretable solution
 - Intuitively pleasant
- No reason to consider it "better" than other methods for demensionality reduction...

NON-LINEAR SITUATIONS

Pearson correlation(d1,d2): 0

NONLINEAR DATA

MANIFOLDS

MANIFOLDS

- · Manifolds are another approach to dimensionality reduction
- The general principle is to
 - ▶ 1)Define a notion of distance between elements in the original space
 - ▶ 2)Define a notion of distance between elements in a reduced, target space
 - ▶ 3)Minimize the difference between distances in original and target space
- In many cases, the process is nonlinear, i.e., we choose distances such as
 - We care more about preserving the distance for items "close" in space than for those "far" from each other

MDS

- MDS: Multi-dimensional Scaling:
 - Simply minimize distance between original space and target space
 - e.g., d-dimensional forced to 2-dimensional
- How to do it?
 - 1)Compute all (squared Euclidean) pairwise distances between items=>Similarity matrix
 - n x f matrix => n x n matrix
 - Apply double-centering (remove row and column means)
 - 2)Compute PCA on this similarity matrix

Problems:

- Very costly (nb features=nb elements), n^2
- Try to preserve all distances, therefore extremely constrained

MDS

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	WDC
Atl	0	587	7 1212	701	1936	604	748	2139	2182	54
Chi	587	(920	940	1745	1188	713	1858	1737	5
Den	1212	920	0	879	831	1726	1631	949	1021	149
Hou	701	940	879	0	1374	968	1420	1645	1891	12
LA	1936	1745	831	1374	0	2339	2451	347	959	230
Mia	604	1188	3 1726	968	2339	0	1092	2594	2734	9:
NYC	748	713	1631	1420	2451	1092	0	2571	2408	20
SF	2139	1858	949	1645	347	2594	2571	0	678	
Sea	2182	1737	7 1021	1891	959	2734	2408	678	0	
WDC	543	597	1494	1220	2300	923	205	2442	2329	i.

ISOMAP

- Variation of MDS
 - ▶ 1) We define a **graph** such as two elements are connected if they are at distance<threshold. (Alternative: fixed number of neighbors)
 - Put a weight on edges=euclidean distance
 - 2) Compute a similarity matrix, such as distance = weighted shortest path distance
 - ► 3)Apply MDS on it
- Non-linear distances

T-SNE

T-SNE

- t-SNE: t-distributed stochastic neighbor embedding
- Non-linear dimensionality reduction
- One of the most popular method for visualizing data in low dimensions
- Similar to MDS/Isomap, but:
 - Do not try to preserve long distance at all
 - Can preserve local structure but loose global one
 - Optimized via gradient descent
 - No way to guarantee global optimum

SNE

- General principle:
 - Define a notion of similarity $p_{i|i}$ in the high dimensional space P
 - Based on normal distribution
 - Define a notion of similarity $q_{j|i}$ in the low dimensional space Q
 - Based on student-t distribution, tends to "exaggerate" differences
 - For each point of initial coordinates x_i , find a new coordinate y_i in the lower dimensional space, such as to minimize the difference between P and Q
 - $\forall_{i,j} p_{j|i} \approx q_{j|i}$

T-SNE: PERPLEXITY

- There is a perplexity parameter σ : it controls how much each point cares more about close neighbors compared with farther neighbors
 - Low σ : Preserve mostly local distances
 - High σ : Give more importance to long-range distances
 - More expensive, more similar to MDS

INFLUENCE OF PERPLEXITY

More like Isomap

More like MDS

LOW DIMENSIONAL EMBEDDINGS

EMBEDDINGS

- A recent usage of low dimensional embeddings is to encode complex objects as vectors
 - Words as Vector => Word2Vec
 - Nodes (of graph) as Vectors => Node2Vec
 - Documents as Vectors => Doc2Vec

•

NODE2VEC

- Shallow neural network method
- Objective similar to MDS/tSNE:
 - Minimize the difference between graph distance and embedding distance
 - Parameter to tune local/long-distance graph distance
 - (Example implementation: https://github.com/eliorc/node2vec)

AUTO-ENCODER

- Deep learning approach
- Autoencoder:
 - DECODER neural network learns to reconstruct an input object from a small vector
 - ENCODER neural network learns to encode an input object into a small vector (to maximize reconstructability)
- · Created for images, work similarly for texts or graphs
 - (Variational GAE)

EMBEDDINGS

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

OBJECTS/VECTORS TO GRAPHS

GRAPH<->VECTORS

- Graph Embedding: Graph->Vectors
- What about Vectors->Graphs
 - Simple approach: Correlation matrix
 - =>Represent the relations between features in a dataset
 - 1)Compute the correlation between all variables(spearman/Pearson)
 - 2)Keep only correlations above a threshold (alternative: x% strongest)
 - 3) Correlation values can be represented as weights

ITEM-ITEM GRAPH

- Typical application case: Brain signal analysis
 - Distance is computed as signal correlation on fMRI, i.e., regional brain activity
 - => Time series to graph

ITEM-ITEM GRAPH

- We can use graphs as an alternative to dimensionality reduction for visualization
 - PCA / tSNE: project items in 2D, close items are similar
 - Some impossibilities, e.g., multiple semantics for words ("palm": part of the hand, tree)
 - Networks can also be viewed in 2D and preserve the similarity information

Approach:

- ▶ 1)Compute the distance between elements
 - Euclidean
 - Cosine
- 2) Keep as an edge values above a threshold

ITEM-ITEM GRAPH

Comparison PCA-graph representation

FEATURE-FEATURE GRAPH

- Imagine an apartment dataset with variables surface, # rooms, etc.
 - Item-tem: apartment as nodes, links represent similar apartments
 - Feature-feature: each feature is a node, edges represent relations/correlation
- · Useful in particular when many variables
 - Recommendation
 - Biological data
 - etc.

BACKBONE EXTRACTION

- In some cases, the network created might be too dense to be analyzed properly
 - Too low threshold: everything is connected
 - Too high: disconnected graph, most elements removed
- A solution is to use Backbone extraction
 - Methods that retain only the most important edges, based on different principles
 - e.g., https://pypi.org/project/netbone/

BACKBONE EXTRACTION

Boolean Filter

N: 75
E: 73

SPATIAL DATA ANALYSIS

- · Clustering: finding groups of similar observations
- If the data has a spatial structure, we might want the clusters to be contiguous in space
- =>Add a spatial constraint

e.g., vote, weather...

AGGLOMERATIVE CLUSTERING

- · Agglomerative clustering is (yet another) clustering method
- · Define a notion of distance between two sets of points, e.g.
 - Minimal distance between sets elements
 - Average distance between elements
 - **•** ...
- Start with each item in its own cluster
- While nb_cluster >1
 - Merge the two closest cluster

DENDROGRAM

CLUSTER DISTANCES

- Choose a distance function
 - Euclidean distance
 - Cosine distance
 - **>** . . .
- Choose a cluster distance strategy
 - single uses the minimum of the distances between all observations of the two sets.
 - complete or 'maximum' linkage uses the maximum distances between all observations of the two sets.
 - average uses the average of the distances of each observation of the two sets.
 - ward minimizes the variance of the clusters being merged. (Within-Cluster Sum of Squares)
 - $\Delta WCSS = WCSSnew (WCSSC_1 + WCSSC_2)$
 - Similar objective than k-means, but more greedy

- To discover spatial clusters, we want to allow merging only spatially contiguous clusters
- Solution: Connectivity matrix
 - A graph describing what element is a neighbor of another element.
 - Can merge only clusters with at least one edge between clusters

- Connectivity matrix (Binary graph)
 - Contiguity:
 - Contact between surface
 - Distance < threshold
 - KNN (K-nearest-neighbors)
- Spatial Weights Matrix (Weighted graph)
 - Put weights on edges
 - Inverse of the distance
 - Inverse of the squared distance...
 - Row normalized: sum of weights of neihgbors=1

- Other methods
 - K-means with constraints
 - Multiple variants
 - ► DBSCAN: principle of a graph with threshold...

SPATIAL AUTOCORRELATION

Global

- Suppose you have attributes on observations
 - ► Binary (vote FOR/AGAINST, has covid cases or not, etc.)
 - Multi-label (candidate, type of apartments, etc.)
- Are those points distributed randomly/independently?
 - Or is there a correlation between the position of a point and the ones close to
 it
- Correlation between a variable and itself in space
 - =>Spatial autocorrelation

- Using a Spatial Weights Matrix
 - w_{ij} : weight of edge (i,j)
- Spatial lag: $y_i^{sl} = \sum_j w_{ij} y_j$
 - ightharpoonup With y_i the variable of interest
- Weighted average of neighbors

MORAN'S PLOT

Plot relation between standardized values

Moran's I is the slope of a linear regression on this plot

LINEAR SPATIAL AUTOCORRELATION

- · Compute Pearson's linear correlation between
 - Value for observation x
 - Spatial lag for observation x
- In practice, people rather use Moran's I
 - Generalization to take into account:
 - Different # of neighbors
 - Different weights
 - Slope of linear regression on Moran's plot

MORAN'S I

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} Z_{i} Z_{j}}{\sum_{i} Z_{i}^{2}}$$

- w_{ij} : weight of edge (i,j)
- z_i : value at i, standardized
- ► *n*: nb. of observations

SPATIAL AUTOCORRELATION

Local

- · Single scores are often misleading
- · We can look at the details:
 - Where are positive/negative autocorrelations?
 - Where is the autocorrelation significant?
- Introduce LISA
 - Local Indicators of Spatial Association

LISA

• 1) Compute significance: Moran's li

$$I_{i} = \frac{z_{i}}{m_{2}} \sum_{j} w_{ij} z_{j}; m_{2} = \frac{\sum_{i} z_{i}^{2}}{n}$$

- m_2 : variance of the variable of interest
- z_i : standardized value
- Positive value: positive spatial correlation at this point
- Negative value: negative spatial correlation at this point
- ▶ 0 or close to 0: no significant spatial autocorrelation
- Threshold on this value to decide significance

Brexit vote example (Support for Brexit)

HH: Hot spots

LL: Cold spots

LH: doughnuts

HL: diamonds in the rough

https://geographicdata.science/book/notebooks/07_local_autocorrelation.html