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DATA ANALYSIS

Other Data Types [ransformations



DATA TRANSFORMATION

- Our data is provided in a given form

» Tabular (vectors)
Network

v

Time series
Text
Images

v

v

v

- [o use the full potential of data mining, you might want to

study it from multiple angles

» How to convert from tabular to graph?
» From Graph to Tabular?

> From images/text to tabular (embedding)!
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DIMENSIONALITY
REDUCTION

Low dimensionality embedding



DIMENSIONALITY
REDUCTION

- Data Mining objective: understand our data
» We get a dataset composed of many features
- Or worst, complex object (image, sound, graph...)
» How to understand the organization of our data’
» How to perform clustering?



VISUALIZATION

- Your data is perfectly fine, but you want to intuitively

understand how it is organized

» Are there groups of similar objects?

~ Are my clusters meaningful?

» |s my classification/clustering on some types of elements and not others.



VISUALIZATION
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CURSE OF DIMENSIONALITY

aving hundreds/thousands of attributes is a problem for data
analysis.

» e.g. medicine: blood analysis, genomics.. ..
» e.g. cooking recipes: each column an ingredient...

- VWe want to reduce the number of attributes while keeping
most of the information

- Also helps with scalability



CORRELATION

- Assume that you have correlated features such as age, height
and weight.

» Redundancy ! Computational Inefficiency

- e.g, Decision tree will spend a lot of time choosing between them for no reason

» Risk of overfitting

- noise between correlated variables used to distinguish individuals

» Model interpretability

- eg, a model will say that y depends on x or w randomly, if x and w correlated

- Dimensionality reduction can create a single variable to capture

what is common
» The rest can be lost or captured by another feature,

- Engine horsepower, Car weight, Fuel Consumption
- =>Performance index (horsepower and weight)

- =>Efficiency score (weight and fuel consumption)
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PCA

- PCA: Principal Component Analysis

- Defines new dimensions that are linear

combinations of initial dimensions
» Objective: concentrate the variance on some dimensions

- So that we can keep only these ones.

- Those we remove contain low variance, thus low information
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PCA

- Algorithm:

350000 -

» 1)Find an "axis”, a unit vector defining a line in

the space

- That minimizes the variance=>the squared distance s
from all points to that line

300000 -

250000 -

150000 -

100000 -

. 2)For d in [2(initial_d)]

» Find another axis, with two constraints:

- Orthogonal to all previous axis
- Among those, minimizing the variance

- 3)At the end, keep the first k

dimensions )
» Some information is lost .
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CHOOSING COMPONENTS

- How to choose k!

» Elbow method... BIC/AIC...
» OR fix beforehand a min threshold of explained variance, e.g.. 80%

- We are fine with losing 20% of information

» |f there is a downstream task, cross-validation

Scree Plot

Explained
variance

Component Number
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COMPUTATION IN PRACTICE

- From standardized dataset X

- Method 1:

- 1)Compute the Covariance Matrix (X' X)
- => Linear Correlation Matrix

» 2) Find the eigenvectors of this matrix
- X'Xx =vav?

-V eingenvectors = Pincipal components, A: Eigenvalues, = explained variance

- Method 2:
» Apply SVD matrix decomposition
- X =UzV?!

- U: left singular vectors. Z: diagonal matrix with the singular values, VT :right singular vectors
(the principal components)
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COMPUTATION IN PRACTICE

e I/ are the principal components

- Computing the new positions for each observation:
- XV
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PCA POPULARITY

- Why is PCA popular?

- Similar reasons than linear regression:
Useful

_ Eliminate correlations

v

v

Analytical solutions
- Guarantee to find the global minimum of the objective
- Could be done before modern computers

Interpretable solution

v

Intuitively pleasant

v

- No reason to consider it “better” than other methods for
demensionality reduction...
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NON-LINEAR SITUATIONS
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MANIFOLDS



MANIFOLDS

- Manifolds are another approach to dimensionality reduction

- [he general principle is to

» 1)Define a notion of distance between elements in the original space
» 2)Define a notion of distance between elements in a reduced, target space

» 3)Minimize the difference between distances in original and target space

N many cases, the process is nonlinear, i.e., we choose
distances such as

» We care more about preserving the distance for items “close” in space than for
those “far” from each other
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MDS

- MD5S: Multi-dimensional Scaling:

> Simply minimize distance between original space and target space

- eg, d-dimensional forced to 2-dimensional

- How to do it!

» 1)Compute all (squared Euclidean) pairwise distances between
items=>Similarity matrix
- n x f matrix => n x n matrix

- Apply double-centering (remove row and column means)

» 2)Compute PCA on this similarity matrix

- Problems:

- Very costly (nb features=nb elements), n?
- Try to preserve all distances, therefore extremely constrained
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SOMAP

. Variation of MDS

» 1)We define a graph such as two elements are connected if they are at
distance<threshold. (Alternative: fixed number of neighbors)
- Put a weight on edges=euclidean distance

» 2)Compute a similarity matrix, such as distance = weighted shortest path
distance

> 3)Apply MDS on it

- Non-linear distances

Isomap (0.58 sec) MDS (3 sec) Spe




T-SNE



T-SNE

- t-SNE : t-distributed stochastic neighbor embedding

- Non-linear dimensionality reduction

- One of the most popular method for visualizing data in low
dimensions

- Similar to MDS/Isomap, but:

» Do not try to preserve long distance at all

- Can preserve local structure but loose global one

» Optimized via gradient descent

- No way to guarantee global optimum
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SNE

- General principle:

» Define a notion of similarity p;|; in the high dimensional space P
- Based on normal distribution

» Define a notion of similarity q;|; in the low dimensional space @
- Based on student-t distribution, tends to “exaggerate” differences

» For each point of initial coordinates x;, find a new coordinate y; in the lower
dimensional space, such as to minimize the difference between P and Q

" VijPjli ® qjji
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T-OSNE: PERPLEXITY

- [here is a perplexity parameter @: it controls how much each
point cares more about close neighbors compared with farther
neighbors

» Low 0a: Preserve mostly local distances
» High o: Give more importance to long-range distances

- More expensive, more similar to MDS
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INFLUENCE OF PERPLEXITY
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LOW DIMENSIONAL
EMBEDDINGS



EMBEDDINGS

- A recent usage of low dimensional embeddings is to encode

complex objects as vectors

» Words as Vector => Word2Vec
» Nodes (of graph) as Vectors => Node2Vec
» Documents as Vectors => Doc2Vec

> LI I I |
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NODE2VEC

. Shallow neural network method

- Objective similar to MDS/tSNE:

» Minimize the difference between graph distance and embedding distance

» Parameter to tune local/long-distance graph distance
» (Example implementation: https://github.com/eliorc/node2vec)



https://github.com/eliorc/node2vec

AU T O-ENCODER

Decoder

- Deep learning approach

Bottleneck

. Autoencoder:

» DECODER neural network learns to reconstruct an input object from a small
vector

» ENCODER neural network learns to encode an input object into a small vector
(to maximize reconstructability)

- Created for images, work similarly for texts or graphs
> (Variational GAE)



EMBEDDINGS
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

OBJECTS/VECTORS
TO
GRAPHS



GRAPH<->VECTORS

- Graph Embedding: Graph->Vectors

- What about Vectors->Graphs

» Simple approach: Correlation matrix
» =>Represent the relations between features in a dataset

- 1)Compute the correlation between all variables(spearman/Pearson)
- 2)Keep only correlations above a threshold (alternative: x% strongest)
- 3)Correlation values can be represented as weights

39



[ TEM-ITEM GRAPH

- [ypical application case: Brain signal analysis

» Distance is computed as signal correlation on fMR, i.e., regional brain activity
» => Time series to graph

A Time series B

Association matrix

\. G k"]vW’W"m’-"»'.f W"c‘“" ASR/Correlation




[ TEM-ITEM GRAPH

- VWe can use graphs as an alternative to dimensionality
reduction for visualization

» PCA /tSNE: project items in 2D, close items are similar

- Some impossibilities, e.g., multiple semantics for words (“palm”: part of the hand, tree)

» Networks can also be viewed in 2D and preserve the similarity information

- Approach:

» 1)Compute the distance between elements
- Euclidean
- Cosine

» 2)Keep as an edge values above a threshold

41



[ TEM-ITEM GRAPH
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FEATURE-FEATURE GRAPH

magine an apartment dataset with variables surface, # rooms,

etc.

> [tem-tem: apartment as nodes, links represent similar apartments
» Feature-feature: each feature is a node, edges represent relations/correlation

- Useful in particular when many variables
» Recommendation
» Biological data
> etc.



BACKBONE EXTRACTION

n some cases, the network created might be too dense to be
analyzed properly

» oo low threshold: everything is connected
» Too high: disconnected graph, most elements removed

- A solution is to use Backbone extraction
» Methods that retain only the most important edges, based on different
principles
> e.g, https://pypi.org/project/netbone/

44


https://gitlab.liris.cnrs.fr/coregraphie/netbone

BACKBONE EXTRACTION
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SPATIAL DATA ANALYSIS



REGIONALIZATION

- Clustering: finding groups of similar observations

- |t the data has a spatial structure, we might want the clusters to
be contiguous in space

- =>Add a spatial constraint

47



REGIONALIZATION

e.g., vote, weather...

https://geographicdata.science/ book/notebggks/ 10_clustering_and_regionalization.ntml



AGGLOMERATIVE
CLUSTERING

- Agglomerative clustering is (yet another) clustering method

- Define a notion of distance between two sets of points, e.g.

» Minimal distance between sets elements
» Average distance between elements

. Start with each item in its own cluster

e While nb cluster >1

» Merge the two closest cluster

49



DENDROGRAM

|
| _

https://www.statisticshowto.com/hierarchical-clustering/
50




CLUSTER DISTANCES

- Choose a distance function

» Euclidean distance
» Cosine distance

» LI I |

- Choose a cluster distance strategy

> single uses the minimum of the distances between all observations of the two
sets.

» complete or ‘maximum’ linkage uses the maximum distances between all
observations of the two sets.

» average uses the average of the distances of each observation of the two sets.
>~ ward minimizes the variance of the clusters being merged. (Within-Cluster Sum
of Squares)
- AWCSS = WCSSnew — (WCSSC, + WCSSC,)

- Similar objective than k-means, but more greedy
51



REGIONALIZATION

- [ o discover spatial clusters, we want to allow merging only
spatially contiguous clusters

- Solution: Connectivity matrix

» A graph describing what element is a neighbor of another element.
» Can merge only clusters with at least one edge between clusters

52



REGIONALIZATION
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REGIONALIZATION

- Connectivity matrix (Binary graph)
» Contiguity:
- Contact between surface
- Distance < threshold

» KNIN (K-nearest-neighbors)

- Spatial Weights Matrix (VWeighted graph)
» Put weights on edges

- Inverse of the distance
- Inverse of the squared distance...

» Row normalized: sum of weights of neihgbors=1

54



REGIONALIZATION

. Other methods

» K-means with constraints

- Multiple variants

» DBSCAN: principle of a graph with threshold...

55



SPATIAL AUTOCORRELATION

Global



INTUITION

- SUppose you have attributes on observations

» Binary (vote FOR/AGAINST, has covid cases or not, etc.)
» Multi-label (candidate, type of apartments, etc.)

- Are those points distributed randomly/independently?

» Or is there a correlation between the position of a point and the ones close to
it

- Correlation between a variable and itself in space

» =>Spatial autocorrelation

57



INTUITION

Negative spatial No spatial Positive spatial
autocorrelation autocorrelation autocorrelation
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INTUITION

- Using a Spatial VWeights Matrix
- W;j: weight of edge (i, )

: Spatial Iag: ylSl — ZWU)/]
J

» With y; the variable of interest

- Weighted average of neighbors

59



MORAN'S PLOT

Plot relation between standardized values
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Moran's | is the slope of a linear regression on this plot
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LINEAR SPATIAL
AU TOCORRELATION

- Compute Pearson’s linear correlation between

» Value for observation x
» Spatial lag for observation x

n practice, people rather use Moran’s |

» (Generalization to take into account:
- Different # of neighbors
- Different weights

» Slope of linear regression on Moran’s plot
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MORAN'S |

; N LidjWijZiZ

YiXiWii 2 Zf

- Wy weight of edge (i, j)

~ Z;: value at [, standardized

» N: nb. of observations
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SPATIAL AUTOCORRELATION

L ocal



INTUITION

Single scores are often misleading

VWe can look at the details:

» Where are positive/negative autocorrelations?
» Where is the autocorrelation significant!

ntroduce LISA

» Local Indicators of Spatial Association
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LISA

- 1)Compute significance: Moran’s |i

- M, variance of the variable of interest

- z;: standardized value
» Positive value: positive spatial correlation at this point
» Negative value: negative spatial correlation at this point
» 0 or close to O0: no significant spatial autocorrelation

- Threshold on this value to decide significance
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-0.66, -0.01
-0.01, 0.08
0.08, 0.34
0.34, 0.97
0.97, 6.89

Brexit vote example
(Support for Brexit)

Local Statistics

Non-Significant
@® Significant

A HH: Hot spots
¢ LL: Cold spots
LH: doughnuts

HL: diamonds in the rough

https://geographicdata.science/book/noteboo

Statistical Significance Moran Cluster Map 66 l<s/07_|ocal_autocorrelann.htm|



