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DATA ANALYSIS
Other Data Types Transformations



DATA TRANSFORMATION

• Our data is provided in a given form
‣ Tabular (vectors)

‣ Network

‣ Time series

‣ Text

‣ Images

‣ ….

• To use the full potential of data mining, you might want to 

study it from multiple angles
‣ How to convert from tabular to graph?

‣ From Graph to Tabular?

‣ From images/text to tabular (embedding)?

2



DIMENSIONALITY 

REDUCTION
Low dimensionality embedding
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DIMENSIONALITY 

REDUCTION

• Data Mining objective: understand our data
‣ We get a dataset composed of many features

- Or worst, complex object (image, sound, graph…)

‣ How to understand the organization of our data?

‣ How to perform clustering?
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VISUALIZATION

• Your data is perfectly fine, but you want to intuitively 

understand how it is organized
‣ Are there groups of similar objects?

‣ Are my clusters meaningful?

‣ Is my classification/clustering on some types of elements and not others.
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VISUALIZATION
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Example: MNIST Dataset

Each pixel is a variable
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t-SNE embedding



CURSE OF DIMENSIONALITY

• Having hundreds/thousands of attributes is a problem for data 

analysis.
‣ e.g.: medicine: blood analysis, genomics….

‣ e.g.: cooking recipes: each column an ingredient…

• We want to reduce the number of attributes while keeping 

most of the information

• Also helps with scalability
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CORRELATION
• Assume that you have correlated features such as age, height 

and weight.
‣ Redundancy ! Computational Inefficiency

- e.g., Decision tree will spend a lot of time choosing between them for no reason

‣ Risk of overfitting 

- noise between correlated variables used to distinguish individuals

‣ Model interpretability

- e.g., a model will say that y depends on x or w randomly, if x and w correlated

• Dimensionality reduction can create a single variable to capture 

what is common
‣ The rest can be lost or captured by another feature, 

- Engine horsepower, Car weight, Fuel Consumption

- =>Performance index (horsepower and weight)

- =>Efficiency score (weight and fuel consumption)
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PCA
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PCA

• PCA: Principal Component Analysis

• Defines new dimensions that are linear 

combinations of initial dimensions
‣ Objective: concentrate the variance on some dimensions

- So that we can keep only these ones.

- Those we remove contain low variance, thus low information
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PCA

• Algorithm:
‣ 1)Find an “axis”, a unit vector defining a line in 

the space

- That minimizes the variance=>the squared distance 

from all points to that line

• 2)For d in [2:(initial_d)]
‣ Find another axis, with two constraints:

- Orthogonal to all previous axis

- Among those, minimizing the variance

• 3)At the end, keep the first k 

dimensions
‣ Some information is lost

?

?

?
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EXAMPLE PCA 2D

Covariance matrix  (original) Covariance matrix  (pca)

[ 1.98675899e+00, 0],
[0,  1.32410092e-02]

1 1 1.98675899 0.01324101

Variance by dimension Variance by dimension

[1.        , 0.98675899],
[0.98675899, 1.        ]

Sum of variance Sum of variance
2 2

[0.9933795, 0.0066205]Explained variance(ratio)
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3D=>2D
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CHOOSING COMPONENTS

Explained 

variance

• How to choose k?
‣ Elbow method… BIC/AIC…

‣ OR fix beforehand a min threshold of explained variance, e.g.: 80%

- We are fine with losing 20% of information 

‣ If there is a downstream task, cross-validation
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COMPUTATION IN PRACTICE
• From standardized dataset 𝑋

• Method 1: 
‣ 1)Compute the Covariance Matrix (𝑋𝑇𝑋)

- => Linear Correlation Matrix

‣ 2) Find the eigenvectors of this matrix

- 𝑋𝑇𝑋 = 𝑉Λ𝑉𝑇

- 𝑉: eingenvectors = Pincipal components, Λ: Eigenvalues, = explained variance

• Method 2:
‣ Apply SVD matrix decomposition

‣ 𝑋 = 𝑈Σ𝑉𝑇

- 𝑈: left singular vectors. Σ: diagonal matrix with the singular values, 𝑉𝑇 :right singular vectors 

(the principal components)
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COMPUTATION IN PRACTICE

• 𝑉 are the principal components

• Computing the new positions for each observation:
‣ 𝑋𝑉
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PCA POPULARITY
• Why is PCA popular?

• Similar reasons than linear regression:
‣ Useful

- Eliminate correlations

‣ Analytical solutions

- Guarantee to find the global minimum of the objective

- Could be done before modern computers

‣ Interpretable solution

‣ Intuitively pleasant

• No reason to consider it “better” than other methods for 

demensionality reduction…
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NON-LINEAR SITUATIONS

Pearson correlation(d1,d2): 0
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NONLINEAR DATA
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MANIFOLDS
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MANIFOLDS

• Manifolds are another approach to dimensionality reduction

• The general principle is to 
‣ 1)Define a notion of distance between elements in the original space

‣ 2)Define a notion of distance between elements in a reduced, target space

‣ 3)Minimize the difference between distances in original and target space

• In many cases, the process is nonlinear, i.e., we choose 

distances such as
‣ We care more about preserving the distance for items “close” in space than for 

those “far” from each other
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MDS
• MDS: Multi-dimensional Scaling:

‣ Simply minimize distance between original space and target space

- e.g., d-dimensional forced to 2-dimensional

• How to do it?
‣ 1)Compute all (squared Euclidean) pairwise distances between 

items=>Similarity matrix
- n x f matrix => n x n matrix

- Apply double-centering (remove row and column means)

‣ 2)Compute PCA on this similarity matrix

• Problems: 
- Very costly (nb features=nb elements), 𝑛2

- Try to preserve all distances, therefore extremely constrained
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MDS
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ISOMAP

• Variation of MDS
‣ 1)We define a graph such as two elements are connected if they are at 

distance<threshold. (Alternative: fixed number of neighbors)

- Put a weight on edges=euclidean distance

‣ 2)Compute a similarity matrix, such as distance = weighted shortest path 

distance

‣ 3)Apply MDS on it

• Non-linear distances
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T-SNE
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T-SNE

• t-SNE : t-distributed stochastic neighbor embedding

• Non-linear dimensionality reduction

• One of the most popular method for visualizing data in low 

dimensions

• Similar to MDS/Isomap, but:
‣ Do not try to preserve long distance at all

- Can preserve local structure but loose global one

‣ Optimized via gradient descent

- No way to guarantee global optimum
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SNE

• General principle:

‣ Define a notion of similarity 𝑝𝑗|𝑖 in the high dimensional space 𝑃
- Based on normal distribution

‣ Define a notion of similarity 𝑞𝑗|𝑖 in the low dimensional space 𝑄

- Based on student-t distribution, tends to “exaggerate” differences

‣ For each point of initial coordinates 𝑥𝑖 , find a new coordinate 𝑦𝑖 in the lower 

dimensional space, such as to minimize the difference between 𝑃 and 𝑄
- ∀𝑖,𝑗𝑝𝑗|𝑖 ≈ 𝑞𝑗|𝑖
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T-SNE: PERPLEXITY

• There is a perplexity parameter 𝜎: it controls how much each 

point cares more about close neighbors compared with farther 

neighbors
‣ Low 𝜎: Preserve mostly local distances

‣ High 𝜎: Give more importance to long-range distances

- More expensive, more similar to MDS
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INFLUENCE OF PERPLEXITY
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More like 

Isomap

More like 

MDS
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LOW DIMENSIONAL 

EMBEDDINGS
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EMBEDDINGS

• A recent usage of low dimensional embeddings is to encode 

complex objects as vectors
‣ Words as Vector => Word2Vec

‣ Nodes (of graph) as Vectors => Node2Vec

‣ Documents as Vectors => Doc2Vec

‣ ….
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NODE2VEC

• Shallow neural network method

• Objective similar to MDS/tSNE:
‣ Minimize the difference between graph distance and embedding distance

‣ Parameter to tune local/long-distance graph distance

‣ (Example implementation: https://github.com/eliorc/node2vec)

https://github.com/eliorc/node2vec


AUTO-ENCODER

• Deep learning approach

• Autoencoder: 
‣ DECODER neural network learns to reconstruct an input object from a small 

vector

‣ ENCODER neural network learns to encode an input object into a small vector 

(to maximize reconstructability)

• Created for images, work similarly for texts or graphs
‣ (Variational GAE)



EMBEDDINGS

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


OBJECTS/VECTORS 

TO 

GRAPHS
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GRAPH<->VECTORS

• Graph Embedding: Graph->Vectors

• What about Vectors->Graphs
‣ Simple approach: Correlation matrix

‣ =>Represent the relations between features in a dataset

- 1)Compute the correlation between all variables(spearman/Pearson)

- 2)Keep only correlations above a threshold (alternative: x% strongest)

- 3)Correlation values can be represented as weights
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ITEM-ITEM GRAPH
• Typical application case: Brain signal analysis

‣ Distance is computed as signal correlation on fMRI, i.e., regional brain activity

‣ => Time series to graph
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ITEM-ITEM GRAPH

• We can use graphs as an alternative to dimensionality 

reduction for visualization
‣ PCA / tSNE: project items in 2D, close items are similar

- Some impossibilities, e.g., multiple semantics for words (“palm”: part of the hand, tree)

‣ Networks can also be viewed in 2D and preserve the similarity information

• Approach:
‣ 1)Compute the distance between elements

- Euclidean

- Cosine

‣ 2)Keep as an edge values above a threshold
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ITEM-ITEM GRAPH
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Comparison PCA-graph representation



FEATURE-FEATURE GRAPH

• Imagine an apartment dataset with variables surface, # rooms, 

etc.
‣ Item-tem: apartment as nodes, links represent similar apartments

‣ Feature-feature: each feature is a node, edges represent relations/correlation

• Useful in particular when many variables
‣ Recommendation

‣ Biological data

‣ etc.



BACKBONE EXTRACTION

• In some cases, the network created might be too dense to be 

analyzed properly 
‣ Too low threshold: everything is connected

‣ Too high: disconnected graph, most elements removed

• A solution is to use Backbone extraction
‣ Methods that retain only the most important edges, based on different 

principles

‣ e.g., https://pypi.org/project/netbone/
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https://gitlab.liris.cnrs.fr/coregraphie/netbone


BACKBONE EXTRACTION
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SPATIAL DATA ANALYSIS
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REGIONALIZATION

• Clustering: finding groups of similar observations

• If the data has a spatial structure, we might want the clusters to 

be contiguous in space

• =>Add a spatial constraint
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https://geographicdata.science/book/notebooks/10_clustering_and_regionalization.html

REGIONALIZATION
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e.g., vote, weather…



AGGLOMERATIVE 

CLUSTERING

• Agglomerative clustering is (yet another) clustering method

• Define a notion of distance between two sets of points, e.g.
‣ Minimal distance between sets elements

‣ Average distance between elements

‣ …

• Start with each item in its own cluster

• While nb_cluster >1
‣ Merge the two closest cluster
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DENDROGRAM

https://www.statisticshowto.com/hierarchical-clustering/
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CLUSTER DISTANCES
• Choose a distance function

‣ Euclidean distance

‣ Cosine distance

‣ …

• Choose a cluster distance strategy
‣ single uses the minimum of the distances between all observations of the two 

sets. 

‣ complete or ‘maximum’ linkage uses the maximum distances between all 

observations of the two sets.

‣ average uses the average of the distances of each observation of the two sets.

‣ ward minimizes the variance of the clusters being merged. (Within-Cluster Sum 

of Squares)

- ΔWCSS = WCSSnew − (WCSS𝐶1 +WCSS𝐶2)

- Similar objective than k-means, but more greedy
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REGIONALIZATION

• To discover spatial clusters, we want to allow merging only 

spatially contiguous clusters

• Solution: Connectivity matrix
‣ A graph describing what element is a neighbor of another element.

‣ Can merge only clusters with at least one edge between clusters
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REGIONALIZATION
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REGIONALIZATION

• Connectivity matrix (Binary graph)
‣ Contiguity: 

- Contact between surface

- Distance < threshold

‣ KNN (K-nearest-neighbors)

• Spatial Weights Matrix (Weighted graph)
‣ Put weights on edges 

- Inverse of the distance 

- Inverse of the squared distance…

‣ Row normalized: sum of weights of neihgbors=1
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REGIONALIZATION

• Other methods
‣ K-means with constraints

- Multiple variants

‣ DBSCAN: principle of a graph with threshold…
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SPATIAL AUTOCORRELATION
Global
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INTUITION

• Suppose you have attributes on observations
‣ Binary (vote FOR/AGAINST, has covid cases or not, etc.)

‣ Multi-label (candidate, type of apartments, etc.)

• Are those points distributed randomly/independently?
‣ Or is there a correlation between the position of a point and the ones close to 

it

• Correlation between a variable and itself in space
‣ =>Spatial autocorrelation
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INTUITION
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INTUITION

• Using a Spatial Weights Matrix

‣ 𝑤𝑖𝑗 : weight of edge (𝑖, 𝑗)

• Spatial lag: 𝑦𝑖
𝑠𝑙 = ∑

𝑗
𝑤𝑖𝑗𝑦𝑗

‣ With 𝑦𝑗 the variable of interest

• Weighted average of neighbors
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MORAN’S PLOT

Plot relation between standardized values

Moran’s I is the slope of a linear regression on this plot
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LINEAR SPATIAL 

AUTOCORRELATION

• Compute Pearson’s linear correlation between
‣ Value for observation x

‣ Spatial lag for observation x

• In practice, people rather use Moran’s I
‣ Generalization to take into account:

- Different # of neighbors

- Different weights

‣ Slope of linear regression on Moran’s plot
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MORAN’S I

𝐼 =
𝑛

∑𝑖∑𝑗𝑤𝑖𝑗

∑𝑖∑𝑗𝑤𝑖𝑗𝑧𝑖𝑧𝑗

∑𝑖 𝑧𝑖
2

‣ 𝑤𝑖𝑗 : weight of edge (𝑖, 𝑗)

‣ 𝑧𝑖 : value at 𝑖, standardized

‣ 𝑛: nb. of observations
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SPATIAL AUTOCORRELATION
Local
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INTUITION

• Single scores are often misleading

• We can look at the details:
‣ Where are positive/negative autocorrelations?

‣ Where is the autocorrelation significant?

• Introduce LISA
‣ Local Indicators of Spatial Association 

64



LISA

• 1)Compute significance:  Moran’s Ii

‣ 𝐼𝑖 =
𝑧𝑖

𝑚2
∑
𝑗
𝑤𝑖𝑗𝑧𝑗;𝑚2 =

∑𝑖 𝑧𝑖
2

𝑛

- 𝑚2: variance of the variable of interest

- 𝑧𝑖 : standardized value

‣ Positive value: positive spatial correlation at this point

‣ Negative value: negative spatial correlation at this point

‣ 0 or close to 0:  no significant spatial autocorrelation

• Threshold on this value to decide significance
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https://geographicdata.science/book/noteboo

ks/07_local_autocorrelation.html

Brexit vote example

(Support for Brexit)

HH: Hot spots

LL: Cold spots

LH: doughnuts

HL: diamonds in the rough
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